SECTION 3.6 Derivatives of Logarithmic Functions 223 3.6 EXERCISES 1. Explain why the natural logarithmic functiony In x is used much more frequently in calculus than the other logarithmic functions y 33-34 Find an equation of the tangent line to the curve at the given point. log,x. 33. y In(x 3x +1), (3,0) 2-22 Differentiate the function. 34. y x2 In x, (1,0) 2. f(x)=x In x- x 3. f(x)= sin( In x) A35. If f(x) = sin x + In x, find f'(x). Check that your answer is reasonable by comparing the graphs of f andf'. 4. f(x)In(sinx) 5. f(x)= In 1 6. у X 36. Find equations of the tangent lines to the curve y = (In x)/x In x at the points (1,0) and (e, 1/e). Illustrate by graphing the curve and its tangent lines. 7. f(x) log 10(1 cos x) 8. f(x) log10Vx 9. g(x)In(xe 2x) 37. Let f(x)= f'(T/4) 6? =cx +In(cos x). For what value of c is 10. g(t) 1 +Int 11. F(t)=(In t) sin t 12. h(x) In(x +x21) 3? 38. Let f(x)= log,(3x2 - 2). For what value of b is f'(1) (2y1) Vy2 1 39-50 Use logarithmic differentiation to find the derivative of the function. 13. G(y) In In v 14. P(v) 1- e cos x 40. у 3 39. y (x22)(x4) 15. F(s) In ln s 16. y In 1 + t - t'| х 17. T(z) 42. y xe(x + 1) 22 log2z cot x) 18. y In(csc x - 41. y x4 1 a2 z2 20. H(z)=In z2 44. y x 43. y x 19. y ln(e* + xe_*) 46. y (x) 45. y xsinx log2 (x logs x) (sin x)n 21. y tan[In(ax + b)] 22. y 48. y 47. y (cos x)* 50. y (In x)os 49. y (tan x)1/x 23-26 Find y' and y" In x 24. y V In x 51. Find y' if y ln(x2 + y2). 23. у 3 1 + In x 52. Find y' if x = y. 26. y In(1 + In x) 25. y In sec x| 53. Find a formula for f((x) if f(x) = In(x - 1). d9 (x8 In x) dx 27-30 Differentiate f and find the domain of f. 54. Find 28. f(x) 2 + In x X 27. f(x) 1 - In(x 1) 55. Use the definition of derivative to prove that In(1+ x) lim 30. f(x) In In In x 29. f(x) In(x2 2x) X (0-)-. = ex for any X 31. If f(x) In(x + In x), find f'(1). 56. Show that lim 1 cos (In x2), find f'(1). 32. If f(x)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
icon
Concept explainers
Topic Video
Question

I need help with question 29 in Section 3.6, page 223, of the James Stewart Calculus Eighth Edition textbook.

SECTION 3.6
Derivatives of Logarithmic Functions
223
3.6 EXERCISES
1. Explain why the natural logarithmic functiony In x is used
much more frequently in calculus than the other logarithmic
functions y
33-34 Find an equation of the tangent line to the curve at the
given point.
log,x.
33. y In(x 3x +1), (3,0)
2-22 Differentiate the function.
34. y x2 In x, (1,0)
2. f(x)=x In x- x
3. f(x)= sin( In x)
A35. If f(x) = sin x + In x, find f'(x). Check that your answer is
reasonable by comparing the graphs of f andf'.
4. f(x)In(sinx)
5. f(x)= In
1
6. у
X
36. Find equations of the tangent lines to the curve y = (In x)/x
In x
at the points (1,0) and (e, 1/e). Illustrate by graphing the
curve and its tangent lines.
7. f(x)
log 10(1 cos x)
8. f(x) log10Vx
9. g(x)In(xe 2x)
37. Let f(x)=
f'(T/4) 6?
=cx +In(cos x). For what value of c is
10. g(t) 1 +Int
11. F(t)=(In t) sin t
12. h(x) In(x +x21)
3?
38. Let f(x)= log,(3x2 - 2). For what value of b is f'(1)
(2y1)
Vy2 1
39-50 Use logarithmic differentiation to find the derivative of the
function.
13. G(y) In
In v
14. P(v)
1-
e cos x
40. у 3
39. y (x22)(x4)
15. F(s) In ln s
16. y In 1 + t - t'|
х
17. T(z)
42. y xe(x + 1)
22 log2z
cot x)
18. y In(csc x -
41. y
x4 1
a2 z2
20. H(z)=In z2
44. y x
43. y x
19. y ln(e* + xe_*)
46. y (x)
45. y xsinx
log2 (x logs x)
(sin x)n
21. y tan[In(ax + b)]
22. y
48. y
47. y (cos x)*
50. y (In x)os
49. y (tan x)1/x
23-26 Find y' and y"
In x
24. y
V In x
51. Find y' if y ln(x2 + y2).
23. у 3
1 + In x
52. Find y' if x = y.
26. y In(1 + In x)
25. y In sec x|
53. Find a formula for f((x) if f(x) = In(x - 1).
d9
(x8 In x)
dx
27-30 Differentiate f and find the domain of f.
54. Find
28. f(x) 2 + In x
X
27. f(x)
1 - In(x 1)
55. Use the definition of derivative to prove that
In(1+ x)
lim
30. f(x) In In In x
29. f(x) In(x2 2x)
X
(0-)-.
= ex for any X
31. If f(x) In(x + In x), find f'(1).
56. Show that lim 1
cos (In x2), find f'(1).
32. If f(x)
Transcribed Image Text:SECTION 3.6 Derivatives of Logarithmic Functions 223 3.6 EXERCISES 1. Explain why the natural logarithmic functiony In x is used much more frequently in calculus than the other logarithmic functions y 33-34 Find an equation of the tangent line to the curve at the given point. log,x. 33. y In(x 3x +1), (3,0) 2-22 Differentiate the function. 34. y x2 In x, (1,0) 2. f(x)=x In x- x 3. f(x)= sin( In x) A35. If f(x) = sin x + In x, find f'(x). Check that your answer is reasonable by comparing the graphs of f andf'. 4. f(x)In(sinx) 5. f(x)= In 1 6. у X 36. Find equations of the tangent lines to the curve y = (In x)/x In x at the points (1,0) and (e, 1/e). Illustrate by graphing the curve and its tangent lines. 7. f(x) log 10(1 cos x) 8. f(x) log10Vx 9. g(x)In(xe 2x) 37. Let f(x)= f'(T/4) 6? =cx +In(cos x). For what value of c is 10. g(t) 1 +Int 11. F(t)=(In t) sin t 12. h(x) In(x +x21) 3? 38. Let f(x)= log,(3x2 - 2). For what value of b is f'(1) (2y1) Vy2 1 39-50 Use logarithmic differentiation to find the derivative of the function. 13. G(y) In In v 14. P(v) 1- e cos x 40. у 3 39. y (x22)(x4) 15. F(s) In ln s 16. y In 1 + t - t'| х 17. T(z) 42. y xe(x + 1) 22 log2z cot x) 18. y In(csc x - 41. y x4 1 a2 z2 20. H(z)=In z2 44. y x 43. y x 19. y ln(e* + xe_*) 46. y (x) 45. y xsinx log2 (x logs x) (sin x)n 21. y tan[In(ax + b)] 22. y 48. y 47. y (cos x)* 50. y (In x)os 49. y (tan x)1/x 23-26 Find y' and y" In x 24. y V In x 51. Find y' if y ln(x2 + y2). 23. у 3 1 + In x 52. Find y' if x = y. 26. y In(1 + In x) 25. y In sec x| 53. Find a formula for f((x) if f(x) = In(x - 1). d9 (x8 In x) dx 27-30 Differentiate f and find the domain of f. 54. Find 28. f(x) 2 + In x X 27. f(x) 1 - In(x 1) 55. Use the definition of derivative to prove that In(1+ x) lim 30. f(x) In In In x 29. f(x) In(x2 2x) X (0-)-. = ex for any X 31. If f(x) In(x + In x), find f'(1). 56. Show that lim 1 cos (In x2), find f'(1). 32. If f(x)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Knowledge Booster
Application of Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning