Section 2-8 Hexadecimal Numbers 37. Convert each hexadecimal number to binary: (a) 4616 (e) FA 16 (a) 4216 (e) FF 16 (b) 5416 (1) ABC 16 38. Convert each binary number to hexadecimal: (a) 1111 (b) 1011 (d) 10101010 (e) 10101100 39. Convert each hexadecimal number to decimal: (a) 10 (e) 365 (b) 6416 (1) BC16 40. Convert each decimal number to hexadecimal: (b) 15 (1) 3652 41. Perform the following additions: (a) 2516 + 3316 (b) 4316 + 6216 42. Perform the following subtractions: (a) 6016-3916 (b) A516-9816 (c) B416 (g) ABCD 16 Number Systems, Operations, and Codes (c) 11111 ( 10111011 (c) 2B16 (g) 6F116 (a) 178 (0) 653 (c) 32 (g) 7825 (c) A416 + F516 (c) F116 A616 (d) IA316 (d) 4D16 (h) ABC16 (b) 268 (0 777 (d) 54 (h) 8925 (d) FC16 + AE16 Section 2-9 Octal Numbers 43. Convert each octal number to decimal: (a) 148 (b) 53g (c) 678 (d) 1748 (1) 254 (g) 26738 (h) 77778 (e) 635g 44. Convert each decimal number to octal by repeated division by 8: (a) 23 (b) 45 (c) 65 (d) 84 (e) 124 (1) 156 (g) 654 (h) 9999 (d) AC16-1016 45. Convert each octal number into binary: (c) 1458 (d) 4568

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
Digital Electronics Are these complete answers? I want complete
Section 2-8 Hexadecimal Numbers
37. Convert each hexadecimal number to binary:
(b) 5416
(1) ABC 16
38. Convert each binary number to hexadecimal:
(a) 1111
(b) 1011
(d) 10101010
(e) 10101100
39. Convert each hexadecimal number to decimal:
(a) 4616
(e) FA16
(a) 4216
E
(e) FF16
(b) 6416
(1) BC16
40. Convert each decimal number to hexadecimal:
(a) 10
(e) 365
(b) 15
(f) 3652
41. Perform the following additions:
(a) 2516 + 3316 (b) 4316 + 6216
42. Perform the following subtractions:
(a) 6016-3916 (b) A516-9816
Number Systems, Operations, and Codes
(c) B416
(g) ABCD 16
(c) 11111
(1) 10111011
(a) 100
(d) 1111
(g) 110011
(c) 2B16
(g) 6F116
(g) 44
(c) 32
(g) 7825
(c) A416 + FS16
(c) F116 - A616
Section 2-9 Octal Numbers
43. Convert each octal number to decimal:
(c) 678
(a) 148 (b) 538
(e) 635g (1) 254
(g) 2673g
(b) 45
(1) 156
(a) 4+3
(e) 28+ 23
44. Convert each decimal number to octal by repeated division by 8:
(a) 23
(c) 65
(d) 84
(e) 124
(g) 654
(h) 9999
(a) 0001
(d) 00011000
(g) 01000101
(d) 1A316
45. Convert each octal number into binary:
(c) 1458
(a) 178 (b) 268
(e) 653g (1) 7778
46. Convert each binary number to octal:
(d) 4D16
(h) ABC16
(d) 54
(h) 8925
(d) FC16+ AE16
(g) 100101111000
(i) 1001000000011000
52. Add the following BCD numbers:
(a) 0010+ 0001
(c) 01110010
(e) 00011000+00010001
(g) 01000000+01000111
(d) AC 16-1016
53. Add the following BCD numbers:
(a) 1000+0110
(c) 1001 1000
(e) 0010010100100111
(g) 10011000+ 10010111
(b) 110
(e) 11001
(h) 101010
Section 2-10 Binary Coded Decimal (BCD)
47. Convert each of the following decimal numbers to 8421 BCD:
(a) 10 (b) 13 (e) 18
(h) 57 (i) 69
48. Convert each of the decimal numbers in Problem 47 to straight binary, and compare the
number of bits required with that required for BCD.
49. Convert the following decimal numbers to BCD:
(a) 104 (b) 128 (c) 132 (d) 150 (e) 186
(f) 210 (g) 359 (h) 547 (i) 1051
50. Convert each of the BCD numbers to decimal:
www
(b) 0110
(b) 5+2
(f) 65 + 58
(e) 00011001
(h) 10011000
(d) 1748
(h) 7777
51. Convert each of the BCD numbers to decimal:
(a) 10000000
(c) 001101000110
(e) 011101010100
(d) 4568
(c) 1100
(f) 11110
(i) 10101111
(d) 21 (e) 25
(j) 98 (k) 125
(f) 36
(1) 156
(c) 1001
(f) 00110010
(i) 100001110000
(b) 001000110111
(d) 010000100001
(f) 100000000000
(h) 0001011010000011
(i) 0110011001100111
(b) 01010011
(d) 1000+ 0001
(f) 01100100+ 00110011
(h) 10000101 +00010011
54. Convert each pair of decimal numbers to BCD, and add as indicated:
(c) 6+4
(g) 113 + 101
(b) 01110101
(d) 1001+0111
(f) 0101000101011000
(h) 010101100001+011100001000
(d) 17 + 12
(h) 295+157
Transcribed Image Text:Section 2-8 Hexadecimal Numbers 37. Convert each hexadecimal number to binary: (b) 5416 (1) ABC 16 38. Convert each binary number to hexadecimal: (a) 1111 (b) 1011 (d) 10101010 (e) 10101100 39. Convert each hexadecimal number to decimal: (a) 4616 (e) FA16 (a) 4216 E (e) FF16 (b) 6416 (1) BC16 40. Convert each decimal number to hexadecimal: (a) 10 (e) 365 (b) 15 (f) 3652 41. Perform the following additions: (a) 2516 + 3316 (b) 4316 + 6216 42. Perform the following subtractions: (a) 6016-3916 (b) A516-9816 Number Systems, Operations, and Codes (c) B416 (g) ABCD 16 (c) 11111 (1) 10111011 (a) 100 (d) 1111 (g) 110011 (c) 2B16 (g) 6F116 (g) 44 (c) 32 (g) 7825 (c) A416 + FS16 (c) F116 - A616 Section 2-9 Octal Numbers 43. Convert each octal number to decimal: (c) 678 (a) 148 (b) 538 (e) 635g (1) 254 (g) 2673g (b) 45 (1) 156 (a) 4+3 (e) 28+ 23 44. Convert each decimal number to octal by repeated division by 8: (a) 23 (c) 65 (d) 84 (e) 124 (g) 654 (h) 9999 (a) 0001 (d) 00011000 (g) 01000101 (d) 1A316 45. Convert each octal number into binary: (c) 1458 (a) 178 (b) 268 (e) 653g (1) 7778 46. Convert each binary number to octal: (d) 4D16 (h) ABC16 (d) 54 (h) 8925 (d) FC16+ AE16 (g) 100101111000 (i) 1001000000011000 52. Add the following BCD numbers: (a) 0010+ 0001 (c) 01110010 (e) 00011000+00010001 (g) 01000000+01000111 (d) AC 16-1016 53. Add the following BCD numbers: (a) 1000+0110 (c) 1001 1000 (e) 0010010100100111 (g) 10011000+ 10010111 (b) 110 (e) 11001 (h) 101010 Section 2-10 Binary Coded Decimal (BCD) 47. Convert each of the following decimal numbers to 8421 BCD: (a) 10 (b) 13 (e) 18 (h) 57 (i) 69 48. Convert each of the decimal numbers in Problem 47 to straight binary, and compare the number of bits required with that required for BCD. 49. Convert the following decimal numbers to BCD: (a) 104 (b) 128 (c) 132 (d) 150 (e) 186 (f) 210 (g) 359 (h) 547 (i) 1051 50. Convert each of the BCD numbers to decimal: www (b) 0110 (b) 5+2 (f) 65 + 58 (e) 00011001 (h) 10011000 (d) 1748 (h) 7777 51. Convert each of the BCD numbers to decimal: (a) 10000000 (c) 001101000110 (e) 011101010100 (d) 4568 (c) 1100 (f) 11110 (i) 10101111 (d) 21 (e) 25 (j) 98 (k) 125 (f) 36 (1) 156 (c) 1001 (f) 00110010 (i) 100001110000 (b) 001000110111 (d) 010000100001 (f) 100000000000 (h) 0001011010000011 (i) 0110011001100111 (b) 01010011 (d) 1000+ 0001 (f) 01100100+ 00110011 (h) 10000101 +00010011 54. Convert each pair of decimal numbers to BCD, and add as indicated: (c) 6+4 (g) 113 + 101 (b) 01110101 (d) 1001+0111 (f) 0101000101011000 (h) 010101100001+011100001000 (d) 17 + 12 (h) 295+157
SECTION 2-8 CHECKUP
1. Convert the following binary numbers to hexadecimal:
(a) 10110011 (b) 110011101000
2. Convert the following hexadecimal numbers to binary:
(a) 5716 (b) 3A516 (c) F80B16
3. Convert 9B3016 to decimal.
4. Convert the decimal number 573 to hexadecimal.
SECTION 2-9 CHECKUP
1. Convert the following octal numbers to decimal:
(a) 73g
(b) 1258
2. Convert the following decimal numbers to octal:
(a) 9810
(b) 16310
3. Convert the following octal numbers to binary:
(a) 468
(b) 7238
(c) 56248
4. Convert the following binary numbers to octal:
(a) 110101111
(b) 1001100010
(c) 10111111001
SECTION 2-10 CHECKUP
1. What is the binary weight of each 1 in the following BCD numbers?
(a) 0010 (b) 1000 (c) 0001 (d) 0100
2. Convert the following decimal numbers to BCD:
(a) 6 (b) 15 (c) 273 (d) 849
3. What decimal numbers are represented by each BCD code?
(a) 10001001
(b) 001001111000 (c) 000101010111
4. In BCD addition, when is a 4-bit sum invalid?
Transcribed Image Text:SECTION 2-8 CHECKUP 1. Convert the following binary numbers to hexadecimal: (a) 10110011 (b) 110011101000 2. Convert the following hexadecimal numbers to binary: (a) 5716 (b) 3A516 (c) F80B16 3. Convert 9B3016 to decimal. 4. Convert the decimal number 573 to hexadecimal. SECTION 2-9 CHECKUP 1. Convert the following octal numbers to decimal: (a) 73g (b) 1258 2. Convert the following decimal numbers to octal: (a) 9810 (b) 16310 3. Convert the following octal numbers to binary: (a) 468 (b) 7238 (c) 56248 4. Convert the following binary numbers to octal: (a) 110101111 (b) 1001100010 (c) 10111111001 SECTION 2-10 CHECKUP 1. What is the binary weight of each 1 in the following BCD numbers? (a) 0010 (b) 1000 (c) 0001 (d) 0100 2. Convert the following decimal numbers to BCD: (a) 6 (b) 15 (c) 273 (d) 849 3. What decimal numbers are represented by each BCD code? (a) 10001001 (b) 001001111000 (c) 000101010111 4. In BCD addition, when is a 4-bit sum invalid?
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Logic Gate and Its Application
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,