Second Order Equations] How do you solve 4? Question 4 is a continuation of the previous questions
Second Order Equations] How do you solve 4? Question 4 is a continuation of the previous questions
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
[Second Order Equations] How do you solve 4? Question 4 is a continuation of the previous questions
![we will use the method of separation of variables and Fourier
series to derive a solution formula for the wave equation on -l < x <l
utt - c²uxx = 0,
with periodic boundary conditions
and initial conditions
u (-l, t) = u(l, t),
ux (−l, t) = ux (l, t),
(1)
u (x,0) = (x),
ut (x,0) = (x).
1. Suppose we have a "separated" solution u (x, t) = X(x)T(t). By following the method in
class, show that there must exist a real number number A so that
X" (x) + AX (x) = 0,
T" (t) + c²AT (t) = 0.
2. Show that in order for X to satisfy the correct boundary conditions, we must have λ = (¹7) ²
for n = 0,1,2,... and that we can take X to be any linear combination of cos (¹) or
sin (¹7x).
ηπχ
3. Solve the equation for T(t) (as we did in lecture) and then (just as in lecture) sum over all
possible separated solutions to obtain a guess for the general form of the solution u.
4. By evaluating the formula (and the time derivative of the formula) at t = 0, relate this
general formula to the initial data & and 4. Using the formulas for Fourier series on
-l < x < l, show that you can arrange the constants in your formula so that the function
u determined by the formula obtains the initial data correctly.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F568d0f1d-4332-4acf-9fb6-227d9ac03ee6%2F6628ecca-b31a-4193-b80e-bb8e00836324%2Fa5cn1i5_processed.png&w=3840&q=75)
Transcribed Image Text:we will use the method of separation of variables and Fourier
series to derive a solution formula for the wave equation on -l < x <l
utt - c²uxx = 0,
with periodic boundary conditions
and initial conditions
u (-l, t) = u(l, t),
ux (−l, t) = ux (l, t),
(1)
u (x,0) = (x),
ut (x,0) = (x).
1. Suppose we have a "separated" solution u (x, t) = X(x)T(t). By following the method in
class, show that there must exist a real number number A so that
X" (x) + AX (x) = 0,
T" (t) + c²AT (t) = 0.
2. Show that in order for X to satisfy the correct boundary conditions, we must have λ = (¹7) ²
for n = 0,1,2,... and that we can take X to be any linear combination of cos (¹) or
sin (¹7x).
ηπχ
3. Solve the equation for T(t) (as we did in lecture) and then (just as in lecture) sum over all
possible separated solutions to obtain a guess for the general form of the solution u.
4. By evaluating the formula (and the time derivative of the formula) at t = 0, relate this
general formula to the initial data & and 4. Using the formulas for Fourier series on
-l < x < l, show that you can arrange the constants in your formula so that the function
u determined by the formula obtains the initial data correctly.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)