Sebook tents an Resource y essible Resources rchase Options Communication Tools > Shown below are the number of trials and success probability for some Bernoulli trials. Let X denote the total number of successes. n=4 and p=0.1 a. Determine P(X=2) using the binomial probability formula. Binomial probabilities for b. Determine P(X=2) using a table of binomial probabilities. Compare this answer to part (a). Click here for the binomial probability table. A X 0.1 0.2 0.25 0.3 0.4 a. Using the binomial formula, P(X= 2) is (Round to three decimal places as needed.) 10 1 20 1 2 0.900 0.800 0.750 0.700 0.600 0 0.100 0.200 0.250 0.300 0.400 0. 0.810 0.640 0.563 0.490 0.360 02 0.180 0.320 0.375 0.420 0.480 0.5 0.010 0.040 0.063 0.090 0.160 0.25 0.729 0512 0.422 0.343 0.216 0.12 0.243 0.384 0.422 0.441 0432 0.37 0.027 0.096 0.141 0.189 0.288 0.37 0.001 0.008 0.016 0.027 0.064 0.125 30 1 0.656 0.410 0.316 0.240 0.130 0.063 0.292 0.410 0.422 0.412 0.346 0.250 0.049 0.154 0.211 0.265 0.346 0.375 0.004 0.026 0.047 0.076 0.154 0.250 0.000 0.002 0.004 0.008 0.026 0.063 0.590 0.328 0.237 0.168 0.078 0.031 0.328 0.410 0.396 0.360 0.259 0.156 0.073 0.205 0.264 0.309 0346 0.312 0.008 0.051 0.088 0.132 0230 0.312 0.000 0.006 0.015 0.028 0.077 0.156 G 0.000 0.000 0.001 0.002 0.010 0.031 o 0.531 0.262 0.178 0.118 0.047 0016 0. 0.354 0.393 0.356 0.303 0.187 0.094 0 Help me solve this View an example Get more help. A Pearson 4 5 6 2 3 0 1 2 3 4 0 1 2 3 1 5 0 1

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
### Exploring Binomial Probabilities

#### Example Problem:
Shown below are the number of trials and success probability for some Binomial trials. Let \( X \) denote the total number of successes.

**Tasks:**
a. Using the binomial formula, find \( P(X \geq 2) \) (Round to three decimal places as needed).
b. Determine \( P(X \geq 2) \) using the binomial probability formula.
c. Determine \( P(X \geq 2) \) using the table of binomial probabilities. Compare this answer to part (a).

[Click here for the binomial probability table.](#)

#### Help Resources:
- **Help me solve this**
- **View an example**
- **Get more help**

#### Binomial Probabilities Table:
The table provided below displays binomial probabilities for different values of \( n \), \( x \), and \( p \).

![Binomial Probability Table](#)

- **n**: number of trials
- **x**: number of successes
- **p**: probability of success on a single trial

The table contains probabilities corresponding to specific combinations of \( n \) (number of trials), \( x \) (number of successes), and \( p \) (probability of success). Each cell in the table represents the probability of achieving exactly \( x \) successes in \( n \) trials.

#### Example of Table Interpretation:
If we consider \( n = 5 \), \( x = 2 \), and \( p = 0.4 \):
- Locate the row for \( n = 5 \).
- Within this row, find the cell under the column for \( x = 2 \) and \( p = 0.4 \).
- The value in this cell is the binomial probability \( P(X = 2) \) for the given parameters.

Use this table to verify your calculations from part (a) and compare the results.
Transcribed Image Text:### Exploring Binomial Probabilities #### Example Problem: Shown below are the number of trials and success probability for some Binomial trials. Let \( X \) denote the total number of successes. **Tasks:** a. Using the binomial formula, find \( P(X \geq 2) \) (Round to three decimal places as needed). b. Determine \( P(X \geq 2) \) using the binomial probability formula. c. Determine \( P(X \geq 2) \) using the table of binomial probabilities. Compare this answer to part (a). [Click here for the binomial probability table.](#) #### Help Resources: - **Help me solve this** - **View an example** - **Get more help** #### Binomial Probabilities Table: The table provided below displays binomial probabilities for different values of \( n \), \( x \), and \( p \). ![Binomial Probability Table](#) - **n**: number of trials - **x**: number of successes - **p**: probability of success on a single trial The table contains probabilities corresponding to specific combinations of \( n \) (number of trials), \( x \) (number of successes), and \( p \) (probability of success). Each cell in the table represents the probability of achieving exactly \( x \) successes in \( n \) trials. #### Example of Table Interpretation: If we consider \( n = 5 \), \( x = 2 \), and \( p = 0.4 \): - Locate the row for \( n = 5 \). - Within this row, find the cell under the column for \( x = 2 \) and \( p = 0.4 \). - The value in this cell is the binomial probability \( P(X = 2) \) for the given parameters. Use this table to verify your calculations from part (a) and compare the results.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman