se symbolic notation and fractions where neede
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
![**Problem Statement:**
Find the linearization of \( y = (1 + 7x)^{-1/2} \) at \( x = 5 \).
(Use symbolic notation and fractions where needed.)
\[ L(x) = \]
**Solution Explanation:**
To find the linearization of the function \( y = (1 + 7x)^{-1/2} \) at \( x = 5 \), follow these steps:
1. **Identify the function and point of linearization**:
\[
f(x) = (1 + 7x)^{-1/2}
\]
at \( x_0 = 5 \).
2. **Calculate \( f(x_0) \)**:
Substitute \( x = 5 \) into \( f(x) \):
\[
f(5) = (1 + 7 \cdot 5)^{-1/2} = (1 + 35)^{-1/2} = 36^{-1/2} = \frac{1}{6}
\]
3. **Determine \( f'(x) \)**:
Calculate the derivative \( f'(x) \). Using the chain rule:
\[
f(x) = (1 + 7x)^{-1/2} \implies f'(x) = -\frac{1}{2} (1 + 7x)^{-3/2} \cdot 7 = -\frac{7}{2} (1 + 7x)^{-3/2}
\]
Substitute \( x = 5 \) into \( f'(x) \):
\[
f'(5) = -\frac{7}{2} (1 + 35)^{-3/2} = -\frac{7}{2} \cdot 36^{-3/2}
\]
Since \( 36^{3/2} = (36^{1/2})^3 = 6^3 = 216 \):
\[
f'(5) = -\frac{7}{2} \cdot \frac{1}{216} = -\frac{7}{432}
\]
4. **Form the linearization**:
The linear approximation or linearization \( L(x) \) around \( x = x_0 \) is given by](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F7369c9e1-cd27-40fa-b19e-4e793313e403%2F4b79aa8b-c870-4f70-970f-201a8c4ffcc9%2F4dk4r7q.png&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Find the linearization of \( y = (1 + 7x)^{-1/2} \) at \( x = 5 \).
(Use symbolic notation and fractions where needed.)
\[ L(x) = \]
**Solution Explanation:**
To find the linearization of the function \( y = (1 + 7x)^{-1/2} \) at \( x = 5 \), follow these steps:
1. **Identify the function and point of linearization**:
\[
f(x) = (1 + 7x)^{-1/2}
\]
at \( x_0 = 5 \).
2. **Calculate \( f(x_0) \)**:
Substitute \( x = 5 \) into \( f(x) \):
\[
f(5) = (1 + 7 \cdot 5)^{-1/2} = (1 + 35)^{-1/2} = 36^{-1/2} = \frac{1}{6}
\]
3. **Determine \( f'(x) \)**:
Calculate the derivative \( f'(x) \). Using the chain rule:
\[
f(x) = (1 + 7x)^{-1/2} \implies f'(x) = -\frac{1}{2} (1 + 7x)^{-3/2} \cdot 7 = -\frac{7}{2} (1 + 7x)^{-3/2}
\]
Substitute \( x = 5 \) into \( f'(x) \):
\[
f'(5) = -\frac{7}{2} (1 + 35)^{-3/2} = -\frac{7}{2} \cdot 36^{-3/2}
\]
Since \( 36^{3/2} = (36^{1/2})^3 = 6^3 = 216 \):
\[
f'(5) = -\frac{7}{2} \cdot \frac{1}{216} = -\frac{7}{432}
\]
4. **Form the linearization**:
The linear approximation or linearization \( L(x) \) around \( x = x_0 \) is given by
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)