Satellite x ECI(Km) Satellite y Satellite z 5049.164174 3340.361 3048.609 5227.17629 -2122.7-3755.809 -3260.609868 -4044.645 -4358.112 -6362.512242 755.5592 2229.638 1058.797003 4290.472 5140.661 6728.771277 689.2465-429.4266 1247.121325-4050.981-5289.548 -6308.516462 -2051.021-1421.772 -3435.588934 3351.491 4790.884 5119.921803 3176.862 3103.297 5195.104158-2279.925 -3706.763 -3340.400374-3936.052-4397.115 -6359.488878 948.4093 2164.194 1134.262117 4249.289 5158.093 6750.25117 484.5558-354.7835 1182.490033 -4080.364 -5281.146 -6350.914903 -1858.111-1496.216 -3389.686417 3447.197 4755.526 5174.66388 3019.266 3168.457 5169.875543-2428.657-3646.841 -3399.571419 -3831.134-4443.556

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Question

I am trying to plot an orbit in MATLAB. There is something wrong with my code because the final values I get are incorrect. The code is shown below. The correct values are in the image.

 

 

mu = 3.986*10^5; % Earth's gravitational parameter [km^3/s^2]

% Transforming orbital elements to cartesian coordinate system for LEO
a_1 = 6782.99;
e_1 = 0.000685539;
inc_1 = 51.64;
v_1 = 5;
argp_1 = 30;
raan_1 = 10;

[x_1, y_1, z_1, vx_1, vy_1, vz_1] = kep2cart(a_1, e_1, inc_1, raan_1, ...
                                            argp_1, v_1);

Y_1 = [x_1, y_1, z_1, vx_1, vy_1, vz_1];

 


% time_span for two revolutions (depends on the orbit)
t1 = [0 (180*60)];
 

% Setting tolerances
options = odeset('RelTol',1e-12,'AbsTol',1e-12);


% Using ODE45 to numerically integrate for LEO
[t_1, state_1] = ode45(@OrbitProp, t1, Y_1, options);

 

 

 

function dYdt = OrbitProp(t, Y)

 

 

mu = 3.986*10^5; % Earth's gravitational parameter [km^3/s^2]

 

% State Vector

x = Y(1); % [km]

y = Y(2); % [km]

z = Y(3); % [km]

vx = Y(4); % [km/s]

vy = Y(5); % [km/s]

vz = Y(6); % [km/s]

norm = sqrt(x^2+y^2+z^2);

 

% Differential Equations

vdot1 = ((x)/(norm^3))*(-mu); % [km/s^2]

vdot2 = ((y)/(norm^3))*(-mu); % [km/s^2]

vdot3 = ((z)/(norm^3))*(-mu); % [km/s^2]

 

% time derivative state vector

dYdt = [vx;vy;vz;vdot1;vdot2;vdot3]; % [km/s and km/s^2]

 

end

 

 

 

function [x, y, z, vx, vy, vz] = kep2cart(a, e, inc, raan, argp, v)

 

 

% Gravitational parameter

mu = 398600.4418; % (km^3/s^2)

 

% Calculate angular momentum

h = sqrt(a * (1-e^2)*mu); % (km^2/s)

 

% Calculate position and velocity in the periforcal frame

if e ~= 1

p = a*(1 - e^2);

 

else

p = h^2/mu;

 

end

 

r1 = p*cosd(v) / (1 + e*cosd(v));

r2 = p*sind(v) / (1 + e*cosd(v));

r3 = 0;

 

v1 = -sqrt(mu/p)*sind(v);

v2 = sqrt(mu/p)*(e + cosd(v));

v3 = 0;

 

r_w = [r1, r2, r3];

v_w = [v1, v2, v3];

 

% Define the Rotational Matrices

R1 = [cosd(-raan) sind(-raan) 0;

-sind(-raan) cosd(-raan) 0;

0 0 1];

 

R2 = [1 0 0;

0 cosd(-inc) sind(-inc);

0 -sind(-inc) cosd(-inc)];

 

 

R3 = [cosd(-argp) sind(-argp) 0;

-sind(-argp) cosd(-argp) 0;

0 0 1];

 

 

% Calculate position vector

r_rot = (R1 * R2 * R3) * r_w';

 

% Calculate velocity vector

v_rot = (R1 * R2 * R3) * v_w';

 

% Define the cartesian coordinates

x = r_rot(1);

y = r_rot(2);

z = r_rot(3);

vx = v_rot(1);

vy = v_rot(2);

vz = v_rot(3);

 

end

Satellite x ECI(Km) Satellite y Satellite z
5049.164174 3340.361 3048.609
5227.17629
-2122.7-3755.809
-3260.609868 -4044.645 -4358.112
-6362.512242 755.5592 2229.638
1058.797003 4290.472 5140.661
6728.771277 689.2465-429.4266
1247.121325-4050.981-5289.548
-6308.516462 -2051.021-1421.772
-3435.588934 3351.491 4790.884
5119.921803 3176.862 3103.297
5195.104158-2279.925 -3706.763
-3340.400374-3936.052-4397.115
-6359.488878 948.4093 2164.194
1134.262117 4249.289 5158.093
6750.25117 484.5558-354.7835
1182.490033 -4080.364 -5281.146
-6350.914903 -1858.111-1496.216
-3389.686417 3447.197 4755.526
5174.66388 3019.266 3168.457
5169.875543-2428.657-3646.841
-3399.571419 -3831.134-4443.556
Transcribed Image Text:Satellite x ECI(Km) Satellite y Satellite z 5049.164174 3340.361 3048.609 5227.17629 -2122.7-3755.809 -3260.609868 -4044.645 -4358.112 -6362.512242 755.5592 2229.638 1058.797003 4290.472 5140.661 6728.771277 689.2465-429.4266 1247.121325-4050.981-5289.548 -6308.516462 -2051.021-1421.772 -3435.588934 3351.491 4790.884 5119.921803 3176.862 3103.297 5195.104158-2279.925 -3706.763 -3340.400374-3936.052-4397.115 -6359.488878 948.4093 2164.194 1134.262117 4249.289 5158.093 6750.25117 484.5558-354.7835 1182.490033 -4080.364 -5281.146 -6350.914903 -1858.111-1496.216 -3389.686417 3447.197 4755.526 5174.66388 3019.266 3168.457 5169.875543-2428.657-3646.841 -3399.571419 -3831.134-4443.556
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY