sample Lhe the sample data to construct an 80% confidence interval estimate of a, the standard deviation of the duration times of game play. Assume that this sample was obtained from a population with a normal distribuion. Twehe diforent video games showing substance use were observed and the duration of times of game play (in seconds) are listed below. The design of the study justifies the assumption thet the sample can be trealed as a simple random Luestion Help 9 3,621 4,383 4,154 4,111 4,272 4,807 3,841 4,896 4,618 4,848 5,002 3,906 Clok the icon to view the table of Chi-Square critical values The confidence interval estimate is sec

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Topic Video
Question
24
From Donald B. Owen, Handbook of Statistical Tables, © 1962 Addison-Wesley Publishing Co., Reading, MA. Reprinted
Formulas and Tables by Mario F. Triola
Copyright 2010 Pearson Education, Inc.
TABLE A-4 Chi-Square () Distribution
Area to the Right of the Critical Value
Degrees
of
Freedom
0,995
0.025
0.01
0.005
0.99
0.975
0.95
0.90
0.10
0.05
3.841
5.024
6.635
7.879
0.001
0.004
0.016
2.706
0,010
0.020
5.991
7.378
9.210
10.597
0.051
0.103
0.211
4.605
3
0.072
0.115
6.251
7.815
9.348
11.345
12.838
0.216
0.352
0.584
4
0.207
11.143
13.277
14.860
0.297
0.484
0.711
1.064
7.779
9.488
0.412
0.554
11.071
12.833
15.086
16.750
0.831
1.145
1.610
9.236
6
0.676
0.872
12.592
14.449
16.812
18.548
1.237
1.635
2.204
10.645
0.989
14.067
16.013
18.475
20.278
1.239
1.690
2.167
2.833
12.017
8
1.344
1.646
13.362
15.507
17.535
20.090
21.955
2.180
2.733
3.490
9.
1.735
2.088
2.700
16.919
19.023
21.666
23.589
3.325
4.168
14.684
10
2.156
2.558
15.987
18.307
20.483
23.209
25.188
3.247
3.940
4.865
11
2.603
3.053
3.816
4.575
5.578
17.275
19.675
21.920
24.725
26.757
12
3.074
3.571
4.404
5.226
6.304
18.549
21.026
23.337
26.217
28.299
13
3.565
4.107
5.009
5.892
7.042
19.812
22.362
24.736
27.688
29.819
14
4.075
4.660
5.629
6.571
7.790
21,064
23.685
26.119
29.141
31.319
15
4.601
5.229
6.262
7.261
8.547
22.307
24.996
27.488
30.578
32.801
16
5.142
5.812
6.908
7.962
9.312
23.542
26.296
28.845
32.000
34.267
17
5.697
6.408
7.564
8.672
10.085
24.769
27.587
30.191
33.409
35.718
18
6.265
7.015
8.231
9.390
10.865
25.989
28.869
31.526
34,805
37.156
19
6.844
7.633
8.907
10.117
11.651
27.204
30.144
32.852
36.191
38.582
20
7.434
8.260
9.591
10.851
12.443
28.412
31.410
34.170
37.566
39.997
21
8.034
8.897
10.283
11.591
13.240
29.615
32.671
35.479
38.932
41.401
22
8.643
9.542
10.982
12.338
14.042
30.813
33.924
36.781
40.289
42.796
23
9.260
10.196
11.689
13.091
14.848
32.007
35.172
38.076
41.638
44.181
24
9.886
10.856
12.401
13.848
15.659
33.196
36.415
39.364
42.980
45.559
25
10.520
11.524
13.120
14.611
16.473
34.382
37.652
40.646
44.314
46.928
26
11.160
12.198
13.844
15.379
17.292
35.563
38.885
41.923
45.642
48.290
27
11.808
12.879
14.573
16.151
18.114
36.741
40.113
43.194
46.963
49.645
12.461
13.565
15.308
16.928
18.939
37,916
41.337
44.461
28
48.278
50.993
13.121
14.257
16.047
17.708
19.768
39.087
42.557
29
45.722
49.588
52.336
30
13.787
14.954
16.791
18.493
20.599
40.256
43.773
46.979
50.892
53.672
40
20.707
22.164
24.433
26.509
29.051
51.805
55.758
59.342
63.691
66.766
50
27.991
29.707
32.357
34.764
37.689
63.167
67,505
71.420
76.154
79.490
60
35.534
37.485
40.482
43.188
46.459
74.397
79.082
83.298
88.379
91.952
70
43.275
45.442
48.758
51.739
55.329
85.527
90.531
95.023
100.425
104.215
80
51.172
53.540
57.153
60.391
64.278
96.578
101,879
106.629
61.754
65,647
69.126
73.291
112.329
116.321
90
59.196
107.565
113.145
118.136
124.116
67.328
70.065
74.222
77.929
82.358
118.498
128.299
100
124.342
129.561
135.807
140.169
with permission of the publisher.
Degrees of Freedom
for confidence intervals or hypothesis tests with a standard deviation or variance
n - 1
k - 1
(- D(c - 1) for contingency tables with r rows and c columns
for goodness-of-fit with k categories
for Kruskal-Wallis test with k samples
k - 1
Transcribed Image Text:From Donald B. Owen, Handbook of Statistical Tables, © 1962 Addison-Wesley Publishing Co., Reading, MA. Reprinted Formulas and Tables by Mario F. Triola Copyright 2010 Pearson Education, Inc. TABLE A-4 Chi-Square () Distribution Area to the Right of the Critical Value Degrees of Freedom 0,995 0.025 0.01 0.005 0.99 0.975 0.95 0.90 0.10 0.05 3.841 5.024 6.635 7.879 0.001 0.004 0.016 2.706 0,010 0.020 5.991 7.378 9.210 10.597 0.051 0.103 0.211 4.605 3 0.072 0.115 6.251 7.815 9.348 11.345 12.838 0.216 0.352 0.584 4 0.207 11.143 13.277 14.860 0.297 0.484 0.711 1.064 7.779 9.488 0.412 0.554 11.071 12.833 15.086 16.750 0.831 1.145 1.610 9.236 6 0.676 0.872 12.592 14.449 16.812 18.548 1.237 1.635 2.204 10.645 0.989 14.067 16.013 18.475 20.278 1.239 1.690 2.167 2.833 12.017 8 1.344 1.646 13.362 15.507 17.535 20.090 21.955 2.180 2.733 3.490 9. 1.735 2.088 2.700 16.919 19.023 21.666 23.589 3.325 4.168 14.684 10 2.156 2.558 15.987 18.307 20.483 23.209 25.188 3.247 3.940 4.865 11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757 12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.299 13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819 14 4.075 4.660 5.629 6.571 7.790 21,064 23.685 26.119 29.141 31.319 15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801 16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267 17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718 18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34,805 37.156 19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582 20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997 21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401 22 8.643 9.542 10.982 12.338 14.042 30.813 33.924 36.781 40.289 42.796 23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181 24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559 25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928 26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290 27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.194 46.963 49.645 12.461 13.565 15.308 16.928 18.939 37,916 41.337 44.461 28 48.278 50.993 13.121 14.257 16.047 17.708 19.768 39.087 42.557 29 45.722 49.588 52.336 30 13.787 14.954 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672 40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766 50 27.991 29.707 32.357 34.764 37.689 63.167 67,505 71.420 76.154 79.490 60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952 70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215 80 51.172 53.540 57.153 60.391 64.278 96.578 101,879 106.629 61.754 65,647 69.126 73.291 112.329 116.321 90 59.196 107.565 113.145 118.136 124.116 67.328 70.065 74.222 77.929 82.358 118.498 128.299 100 124.342 129.561 135.807 140.169 with permission of the publisher. Degrees of Freedom for confidence intervals or hypothesis tests with a standard deviation or variance n - 1 k - 1 (- D(c - 1) for contingency tables with r rows and c columns for goodness-of-fit with k categories for Kruskal-Wallis test with k samples k - 1
Luestion Heip9
sample LUse the sample data to construct an 80% confidence interval estimate of a, the standard deviation of the duration times of game play. Assume that this sample was obtained from a population with a normal distribution.
Twehe diferent video games showing substance use were observed and the duration of times of game play (in seconds) are listod below. The design of the study justifies the assumption that the sample can be trealed as a simple random
4,111
4,272
4,807
4,154
4,393
5,002
3,906
3,821
4,848
4.618
4,696
3,841
Click the icon to view the table of Chi-Square critical values
The confidence interval estimate is sec <a<sec.
(Round to one decimal place as needed.
Enter vour answer in each of the answer boxes
Exit Honorlock
MacBook Air
20
000
F3
F5
FB
F10
&
*
7
6
%23
Transcribed Image Text:Luestion Heip9 sample LUse the sample data to construct an 80% confidence interval estimate of a, the standard deviation of the duration times of game play. Assume that this sample was obtained from a population with a normal distribution. Twehe diferent video games showing substance use were observed and the duration of times of game play (in seconds) are listod below. The design of the study justifies the assumption that the sample can be trealed as a simple random 4,111 4,272 4,807 4,154 4,393 5,002 3,906 3,821 4,848 4.618 4,696 3,841 Click the icon to view the table of Chi-Square critical values The confidence interval estimate is sec <a<sec. (Round to one decimal place as needed. Enter vour answer in each of the answer boxes Exit Honorlock MacBook Air 20 000 F3 F5 FB F10 & * 7 6 %23
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman