S) Let f(x) = {x² –a²x if if x<2 14– 2x2 x> 2 . Find all value(s) of a that make f - ontinuous at 2. Justify your answer.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Let \( f(x) = \begin{cases} 
x^2 - a^2 x & \text{if } x < 2 \\ 
4 - 2x^2 & \text{if } x \geq 2 
\end{cases} \).

Find all value(s) of \( a \) that make \( f \) continuous at 2. Justify your answer.

**Explanation:**

To ensure the function \( f(x) \) is continuous at \( x = 2 \), the following must be true:

1. The left-hand limit as \( x \) approaches 2 from the left, \( \lim_{{x \to 2^-}} f(x) \), must equal \( f(2) \).
2. The right-hand limit as \( x \) approaches 2 from the right, \( \lim_{{x \to 2^+}} f(x) \), must equal \( f(2) \).
3. Both limits must be equal, i.e., \( \lim_{{x \to 2^-}} f(x) = \lim_{{x \to 2^+}} f(x) \).

### Step-by-Step Solution:

**Step 1: Evaluate \( \lim_{{x \to 2^-}} f(x) \).**

Since the expression for \( x < 2 \) is \( x^2 - a^2 x \), substitute \( x = 2 \) into this expression:

\[ \lim_{{x \to 2^-}} f(x) = 2^2 - a^2 \times 2 = 4 - 2a^2 \]

**Step 2: Evaluate \( \lim_{{x \to 2^+}} f(x) \).**

For \( x \geq 2 \), the expression is \( 4 - 2x^2 \). Substitute \( x = 2 \):

\[ \lim_{{x \to 2^+}} f(x) = 4 - 2(2)^2 = 4 - 8 = -4 \]

**Step 3: Set the limits equal to ensure continuity at \( x = 2 \).**

\[ 4 - 2a^2 = -4 \]

Solve for \( a \):

\[ 4 - 2a^
Transcribed Image Text:**Problem Statement:** Let \( f(x) = \begin{cases} x^2 - a^2 x & \text{if } x < 2 \\ 4 - 2x^2 & \text{if } x \geq 2 \end{cases} \). Find all value(s) of \( a \) that make \( f \) continuous at 2. Justify your answer. **Explanation:** To ensure the function \( f(x) \) is continuous at \( x = 2 \), the following must be true: 1. The left-hand limit as \( x \) approaches 2 from the left, \( \lim_{{x \to 2^-}} f(x) \), must equal \( f(2) \). 2. The right-hand limit as \( x \) approaches 2 from the right, \( \lim_{{x \to 2^+}} f(x) \), must equal \( f(2) \). 3. Both limits must be equal, i.e., \( \lim_{{x \to 2^-}} f(x) = \lim_{{x \to 2^+}} f(x) \). ### Step-by-Step Solution: **Step 1: Evaluate \( \lim_{{x \to 2^-}} f(x) \).** Since the expression for \( x < 2 \) is \( x^2 - a^2 x \), substitute \( x = 2 \) into this expression: \[ \lim_{{x \to 2^-}} f(x) = 2^2 - a^2 \times 2 = 4 - 2a^2 \] **Step 2: Evaluate \( \lim_{{x \to 2^+}} f(x) \).** For \( x \geq 2 \), the expression is \( 4 - 2x^2 \). Substitute \( x = 2 \): \[ \lim_{{x \to 2^+}} f(x) = 4 - 2(2)^2 = 4 - 8 = -4 \] **Step 3: Set the limits equal to ensure continuity at \( x = 2 \).** \[ 4 - 2a^2 = -4 \] Solve for \( a \): \[ 4 - 2a^
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning