S =/2e-3x/4 3x -3x/4 (A) 4 2x - 3x/4 (B) 3 (C) - 1/2 e X (D) 1/2 e e e ₂-3x/4 - 3x/4 dx + + 3 - & e 3 z fe е 3x/4 -3x/4 113 2 -3x/4 -3x/4 + C + C +C + C
S =/2e-3x/4 3x -3x/4 (A) 4 2x - 3x/4 (B) 3 (C) - 1/2 e X (D) 1/2 e e e ₂-3x/4 - 3x/4 dx + + 3 - & e 3 z fe е 3x/4 -3x/4 113 2 -3x/4 -3x/4 + C + C +C + C
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Evaluating the Integral
Given the integral:
\[ \int \frac{x}{2} e^{-3x/4} \, dx \]
### Multiple Choice Options:
- **(A)** \[-\frac{3x}{4} e^{-3x/4} + \frac{3}{4} e^{-3x/4} + C\]
- **(B)** \[-\frac{2x}{3} e^{-3x/4} - \frac{8}{9} e^{-3x/4} + C\]
- **(C)** \[-\frac{x}{2} e^{-3x/4} + \frac{3}{8} e^{-3x/4} + C\]
- **(D)** \[\frac{x}{2} e^{-3x/4} - \frac{1}{2} e^{-3x/4} + C\]
### Explanation:
To solve the given integral, one can use integration by parts, where we choose:
\[ u = \frac{x}{2} \quad \text{and} \quad dv = e^{-3x/4} \, dx \]
Then calculate \( du \) and \( v \):
\[ du = \frac{1}{2} \, dx \]
\[ v = \int e^{-3x/4} \, dx = -\frac{4}{3} e^{-3x/4} \]
Applying the integration by parts formula:
\[ \int u \, dv = uv - \int v \, du \]
Results in:
\[ \int \frac{x}{2} e^{-3x/4} \, dx = \left( \frac{x}{2} \right) \left( -\frac{4}{3} e^{-3x/4} \right) - \int \left( -\frac{4}{3} e^{-3x/4} \right) \left( \frac{1}{2} \, dx \right) \]
Simplify:
\[ -\frac{2x}{3} e^{-3x/4} + \frac{2}{3} \int e^{-3x/4} \, dx \]
\[ \int e^{-3x/4} \, dx = -\frac{4}{3} e^{-3x/4}](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2bb9483f-e549-4e9c-b819-8ce0593a1865%2F16ea94fe-dc2d-47a7-96de-65e7ad8977e3%2Fyri487i_processed.png&w=3840&q=75)
Transcribed Image Text:### Evaluating the Integral
Given the integral:
\[ \int \frac{x}{2} e^{-3x/4} \, dx \]
### Multiple Choice Options:
- **(A)** \[-\frac{3x}{4} e^{-3x/4} + \frac{3}{4} e^{-3x/4} + C\]
- **(B)** \[-\frac{2x}{3} e^{-3x/4} - \frac{8}{9} e^{-3x/4} + C\]
- **(C)** \[-\frac{x}{2} e^{-3x/4} + \frac{3}{8} e^{-3x/4} + C\]
- **(D)** \[\frac{x}{2} e^{-3x/4} - \frac{1}{2} e^{-3x/4} + C\]
### Explanation:
To solve the given integral, one can use integration by parts, where we choose:
\[ u = \frac{x}{2} \quad \text{and} \quad dv = e^{-3x/4} \, dx \]
Then calculate \( du \) and \( v \):
\[ du = \frac{1}{2} \, dx \]
\[ v = \int e^{-3x/4} \, dx = -\frac{4}{3} e^{-3x/4} \]
Applying the integration by parts formula:
\[ \int u \, dv = uv - \int v \, du \]
Results in:
\[ \int \frac{x}{2} e^{-3x/4} \, dx = \left( \frac{x}{2} \right) \left( -\frac{4}{3} e^{-3x/4} \right) - \int \left( -\frac{4}{3} e^{-3x/4} \right) \left( \frac{1}{2} \, dx \right) \]
Simplify:
\[ -\frac{2x}{3} e^{-3x/4} + \frac{2}{3} \int e^{-3x/4} \, dx \]
\[ \int e^{-3x/4} \, dx = -\frac{4}{3} e^{-3x/4}
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning