S =/2e-3x/4 3x -3x/4 (A) 4 2x - 3x/4 (B) 3 (C) - 1/2 e X (D) 1/2 e e e ₂-3x/4 - 3x/4 dx + + 3 - & e 3 z fe е 3x/4 -3x/4 113 2 -3x/4 -3x/4 + C + C +C + C

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
### Evaluating the Integral 

Given the integral:

\[ \int \frac{x}{2} e^{-3x/4} \, dx \]

### Multiple Choice Options:

- **(A)** \[-\frac{3x}{4} e^{-3x/4} + \frac{3}{4} e^{-3x/4} + C\]
- **(B)** \[-\frac{2x}{3} e^{-3x/4} - \frac{8}{9} e^{-3x/4} + C\]
- **(C)** \[-\frac{x}{2} e^{-3x/4} + \frac{3}{8} e^{-3x/4} + C\]
- **(D)** \[\frac{x}{2} e^{-3x/4} - \frac{1}{2} e^{-3x/4} + C\]

### Explanation:
To solve the given integral, one can use integration by parts, where we choose:
\[ u = \frac{x}{2} \quad \text{and} \quad dv = e^{-3x/4} \, dx \]

Then calculate \( du \) and \( v \):

\[ du = \frac{1}{2} \, dx \]
\[ v = \int e^{-3x/4} \, dx = -\frac{4}{3} e^{-3x/4} \]

Applying the integration by parts formula:
\[ \int u \, dv = uv - \int v \, du \]

Results in:
\[ \int \frac{x}{2} e^{-3x/4} \, dx = \left( \frac{x}{2} \right) \left( -\frac{4}{3} e^{-3x/4} \right) - \int \left( -\frac{4}{3} e^{-3x/4} \right) \left( \frac{1}{2} \, dx \right) \]

Simplify:

\[ -\frac{2x}{3} e^{-3x/4} + \frac{2}{3} \int e^{-3x/4} \, dx \]

\[ \int e^{-3x/4} \, dx = -\frac{4}{3} e^{-3x/4}
Transcribed Image Text:### Evaluating the Integral Given the integral: \[ \int \frac{x}{2} e^{-3x/4} \, dx \] ### Multiple Choice Options: - **(A)** \[-\frac{3x}{4} e^{-3x/4} + \frac{3}{4} e^{-3x/4} + C\] - **(B)** \[-\frac{2x}{3} e^{-3x/4} - \frac{8}{9} e^{-3x/4} + C\] - **(C)** \[-\frac{x}{2} e^{-3x/4} + \frac{3}{8} e^{-3x/4} + C\] - **(D)** \[\frac{x}{2} e^{-3x/4} - \frac{1}{2} e^{-3x/4} + C\] ### Explanation: To solve the given integral, one can use integration by parts, where we choose: \[ u = \frac{x}{2} \quad \text{and} \quad dv = e^{-3x/4} \, dx \] Then calculate \( du \) and \( v \): \[ du = \frac{1}{2} \, dx \] \[ v = \int e^{-3x/4} \, dx = -\frac{4}{3} e^{-3x/4} \] Applying the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Results in: \[ \int \frac{x}{2} e^{-3x/4} \, dx = \left( \frac{x}{2} \right) \left( -\frac{4}{3} e^{-3x/4} \right) - \int \left( -\frac{4}{3} e^{-3x/4} \right) \left( \frac{1}{2} \, dx \right) \] Simplify: \[ -\frac{2x}{3} e^{-3x/4} + \frac{2}{3} \int e^{-3x/4} \, dx \] \[ \int e^{-3x/4} \, dx = -\frac{4}{3} e^{-3x/4}
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning