rogram Assignment07 implicit none integer, parameter :: n = 1000 ! maximum iteration real(kind=8), parameter :: EPSILON = 1.d-3 real(kind=8):: x0,x integer:: iteration x0=3.0d0 call solve(f(x),fp(x),x0,n,x,iteration) contains real (kind=8) function f(x) ! this is f(x) implicit none real (kind=8), intent(in)::x
implicit none
integer, parameter :: n = 1000 ! maximum iteration
real(kind=8), parameter :: EPSILON = 1.d-3
real(kind=8):: x0,x
integer:: iteration
x0=3.0d0
call solve(f(x),fp(x),x0,n,x,iteration)
contains
real (kind=8) function f(x) ! this is f(x)
implicit none
real (kind=8), intent(in)::x
f=x**2.0d0-1.0d0
end function f
real (kind=8) function fp(x) ! This is f'(x)
implicit none
real (kind=8), intent(in)::x
fp=2.0d0*x
end function fp
end program Assignment07
modify this program in fortran byy adding a module (called Newton) which contains subroutine
solve. You should develop subroutine solve based on the aforementioned Newton's method.
▪ Function f(x) is x
2-1 whose zero is known. Set the input argument EPSILON to 1.E-3 and input
argument n to 1000 when you call subroutine solve and run the program
Modify the function to one that is known not to have zeros; e.g. (x
2+1)
Step by step
Solved in 2 steps