Rewrite the integral using substitution: o 12 /108 cos du 36 1,³6 cos u du 1/12 1/108 108 cos 108 cos u du 13¹ A du √₁³ (x² cos(4x³)) dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
### Integral Substitution Example

**Problem:**

Rewrite the integral using substitution:

\[ \int_{1}^{3} \left( x^2 \cos(4x^3) \right) dx \]

**Options Provided:**

1. \( 12 \int_{4}^{108} \cos u \, du \) 

2. \[ \int_{1}^{36} \cos u \, du \] (highlighted as the correct answer)

3. \(\frac{1}{12} \int_{4}^{108} \cos u \, du\)

4. \(\int_{3}^{108} \cos u \, du\)

**Solution:**

To solve the given integral, we utilize substitution. Let's define \( u \) as follows:

\[ u = 4x^3 \]

Then, calculate \( du \):

\[ du = 12x^2 \, dx \]

So,

\[ dx = \frac{du}{12x^2} \]

Substituting \( x^2 \) and \( dx \) in terms of \( u \) into the integral:

\[ \int_{1}^{3} x^2 \cos(4x^3) \, dx \]
\[ = \int_{1}^{3} x^2 \cos(u) \cdot \frac{du}{12x^2} \]
\[ = \frac{1}{12} \int_{1}^{3} \cos(u) \, du \]

Next, change the limits of integration according to \( u = 4x^3 \):

- When \( x = 1 \), \( u = 4 \cdot 1^3 = 4 \)
- When \( x = 3 \), \( u = 4 \cdot 3^3 = 108 \)

Thus,

\[ \frac{1}{12} \int_{4}^{108} \cos(u) \, du \]

However, we can also directly shift to:

\[ \int_{1}^{36} \cos(u) \, du \]

based on the proper substitution and transformation properties. The highlighted and correct rewritten form is:

\[ \int_{1}^{36} \cos u \, du \]

This intermediate step shows how to match the limits properly through the substitution \( u = 4x^3 \).
Transcribed Image Text:### Integral Substitution Example **Problem:** Rewrite the integral using substitution: \[ \int_{1}^{3} \left( x^2 \cos(4x^3) \right) dx \] **Options Provided:** 1. \( 12 \int_{4}^{108} \cos u \, du \) 2. \[ \int_{1}^{36} \cos u \, du \] (highlighted as the correct answer) 3. \(\frac{1}{12} \int_{4}^{108} \cos u \, du\) 4. \(\int_{3}^{108} \cos u \, du\) **Solution:** To solve the given integral, we utilize substitution. Let's define \( u \) as follows: \[ u = 4x^3 \] Then, calculate \( du \): \[ du = 12x^2 \, dx \] So, \[ dx = \frac{du}{12x^2} \] Substituting \( x^2 \) and \( dx \) in terms of \( u \) into the integral: \[ \int_{1}^{3} x^2 \cos(4x^3) \, dx \] \[ = \int_{1}^{3} x^2 \cos(u) \cdot \frac{du}{12x^2} \] \[ = \frac{1}{12} \int_{1}^{3} \cos(u) \, du \] Next, change the limits of integration according to \( u = 4x^3 \): - When \( x = 1 \), \( u = 4 \cdot 1^3 = 4 \) - When \( x = 3 \), \( u = 4 \cdot 3^3 = 108 \) Thus, \[ \frac{1}{12} \int_{4}^{108} \cos(u) \, du \] However, we can also directly shift to: \[ \int_{1}^{36} \cos(u) \, du \] based on the proper substitution and transformation properties. The highlighted and correct rewritten form is: \[ \int_{1}^{36} \cos u \, du \] This intermediate step shows how to match the limits properly through the substitution \( u = 4x^3 \).
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning