Rewrite the expresion as Single a log arithm 3 C loggx + 2l0ggy

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Topic: Simplifying Logarithmic Expressions**

**Objective:**
Rewrite the following expression as a single logarithm:

\[ 3(\log_3 x + 2\log_3 y - 4\log_3 z) \]

**Instructions:**

To simplify this expression, apply the following logarithmic properties:

1. **Product Property**: \(\log_b (MN) = \log_b M + \log_b N\)
2. **Quotient Property**: \(\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N\)
3. **Power Property**: \(a \log_b M = \log_b (M^a)\)

**Steps:**

1. Apply the power property to each term inside the parenthesis:
   - \(\log_3 x\) remains \(\log_3 x\)
   - Convert \(2\log_3 y\) to \(\log_3 (y^2)\)
   - Convert \(-4\log_3 z\) to \(-\log_3 (z^4)\)

2. Combine the logarithms inside the parenthesis:
   - Use the product and quotient properties:
   - \(\log_3 x + \log_3(y^2) - \log_3(z^4) = \log_3 \left(\frac{x \cdot y^2}{z^4}\right)\)

3. Apply the multiplied factor outside the parenthesis using the power property:
   - \(3 \cdot \log_3 \left(\frac{x \cdot y^2}{z^4}\right) = \log_3 \left(\left(\frac{x \cdot y^2}{z^4}\right)^3\right)\)

4. Simplified expression:
   - \(\log_3 \left(\frac{x^3 \cdot y^6}{z^{12}}\right)\)

By following these steps, the given expression is rewritten as a single logarithm:

\[ \log_3 \left(\frac{x^3 \cdot y^6}{z^{12}}\right) \]
Transcribed Image Text:**Topic: Simplifying Logarithmic Expressions** **Objective:** Rewrite the following expression as a single logarithm: \[ 3(\log_3 x + 2\log_3 y - 4\log_3 z) \] **Instructions:** To simplify this expression, apply the following logarithmic properties: 1. **Product Property**: \(\log_b (MN) = \log_b M + \log_b N\) 2. **Quotient Property**: \(\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N\) 3. **Power Property**: \(a \log_b M = \log_b (M^a)\) **Steps:** 1. Apply the power property to each term inside the parenthesis: - \(\log_3 x\) remains \(\log_3 x\) - Convert \(2\log_3 y\) to \(\log_3 (y^2)\) - Convert \(-4\log_3 z\) to \(-\log_3 (z^4)\) 2. Combine the logarithms inside the parenthesis: - Use the product and quotient properties: - \(\log_3 x + \log_3(y^2) - \log_3(z^4) = \log_3 \left(\frac{x \cdot y^2}{z^4}\right)\) 3. Apply the multiplied factor outside the parenthesis using the power property: - \(3 \cdot \log_3 \left(\frac{x \cdot y^2}{z^4}\right) = \log_3 \left(\left(\frac{x \cdot y^2}{z^4}\right)^3\right)\) 4. Simplified expression: - \(\log_3 \left(\frac{x^3 \cdot y^6}{z^{12}}\right)\) By following these steps, the given expression is rewritten as a single logarithm: \[ \log_3 \left(\frac{x^3 \cdot y^6}{z^{12}}\right) \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning