Rewrite sin 2 cos as an algebraic expression in v. 5
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Topic Video
Question
![### Problem Statement
Rewrite \(\sin\left(2 \cos^{-1} \frac{v}{5}\right)\) as an algebraic expression in \(v\).
#### Expression to Rewrite
\[ \sin\left(2 \cos^{-1} \frac{v}{5}\right) = \]
### Step-by-Step Explanation
1. **Understanding the Function Composition**:
- The expression involves a sine function applied to an angle that is twice the inverse cosine of \(\frac{v}{5}\).
2. **Using Trigonometric Identities**:
- Recall the double-angle identity for sine:
\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \]
- Let \(\theta = \cos^{-1} \frac{v}{5}\). This implies:
\[ \cos(\theta) = \frac{v}{5} \]
- Using the Pythagorean identity:
\[ \sin^2(\theta) + \cos^2(\theta) = 1 \]
Since \(\cos(\theta) = \frac{v}{5}\), we can find \(\sin(\theta)\):
\[ \sin(\theta) = \sqrt{1 - \left(\frac{v}{5}\right)^2} \]
\[ \sin(\theta) = \sqrt{1 - \frac{v^2}{25}} \]
\[ \sin(\theta) = \frac{\sqrt{25 - v^2}}{5} \]
3. **Applying the Identity to Rewrite the Expression**:
- Substitute \(\theta\) back into the double-angle identity:
\[ \sin\left(2 \cos^{-1} \frac{v}{5}\right) = 2 \sin(\theta) \cos(\theta) \]
- From earlier, we have:
\[ \sin(\theta) = \frac{\sqrt{25 - v^2}}{5} \]
\[ \cos(\theta) = \frac{v}{5} \]
- Therefore:
\[ \sin\left(2 \cos^{-1} \frac{v}{5}\right) = 2 \left(\frac{\sqrt{25 - v^2}}{5}\](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F535bebc9-2960-46ab-b502-76f9901cf6f2%2F18de57eb-91d2-43df-9e3c-4d666aa3fee5%2Fqy8uy9p.jpeg&w=3840&q=75)
Transcribed Image Text:### Problem Statement
Rewrite \(\sin\left(2 \cos^{-1} \frac{v}{5}\right)\) as an algebraic expression in \(v\).
#### Expression to Rewrite
\[ \sin\left(2 \cos^{-1} \frac{v}{5}\right) = \]
### Step-by-Step Explanation
1. **Understanding the Function Composition**:
- The expression involves a sine function applied to an angle that is twice the inverse cosine of \(\frac{v}{5}\).
2. **Using Trigonometric Identities**:
- Recall the double-angle identity for sine:
\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \]
- Let \(\theta = \cos^{-1} \frac{v}{5}\). This implies:
\[ \cos(\theta) = \frac{v}{5} \]
- Using the Pythagorean identity:
\[ \sin^2(\theta) + \cos^2(\theta) = 1 \]
Since \(\cos(\theta) = \frac{v}{5}\), we can find \(\sin(\theta)\):
\[ \sin(\theta) = \sqrt{1 - \left(\frac{v}{5}\right)^2} \]
\[ \sin(\theta) = \sqrt{1 - \frac{v^2}{25}} \]
\[ \sin(\theta) = \frac{\sqrt{25 - v^2}}{5} \]
3. **Applying the Identity to Rewrite the Expression**:
- Substitute \(\theta\) back into the double-angle identity:
\[ \sin\left(2 \cos^{-1} \frac{v}{5}\right) = 2 \sin(\theta) \cos(\theta) \]
- From earlier, we have:
\[ \sin(\theta) = \frac{\sqrt{25 - v^2}}{5} \]
\[ \cos(\theta) = \frac{v}{5} \]
- Therefore:
\[ \sin\left(2 \cos^{-1} \frac{v}{5}\right) = 2 \left(\frac{\sqrt{25 - v^2}}{5}\
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning