Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C, and 800 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Take into account constant specific heats at room temperature. The properties of air at room temperature are cp=1.005 kJ/kg-K, cy= 0.718 kJ/kg.K, R = 0.287 kJ/kg-K, and k= 1.4. etermine the thermal efficiency. e thermal efficiency is %.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
!
Required information
An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C,
and 800 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Take into account constant
specific heats at room temperature. The properties of air at room temperature are cp=1.005 kJ/kg-K, cv=0.718 kJ/kg-K, R
= 0.287 kJ/kg-K, and k = 1.4.
Determine the thermal efficiency.
The thermal efficiency is
%.
Transcribed Image Text:! Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C, and 800 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Take into account constant specific heats at room temperature. The properties of air at room temperature are cp=1.005 kJ/kg-K, cv=0.718 kJ/kg-K, R = 0.287 kJ/kg-K, and k = 1.4. Determine the thermal efficiency. The thermal efficiency is %.
Expert Solution
steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY