Rename each of the following using the distributive property of multiplication over addition so that there are no parentheses in the final answer. Simplify when possible. a. 7(f+g-2) b. (z+x)(z+x+c) c. z(x+1)-Z a. 7(f+g-2)= b. (z+x)(z+x+c) = c. z(x+1)-z=
Rename each of the following using the distributive property of multiplication over addition so that there are no parentheses in the final answer. Simplify when possible. a. 7(f+g-2) b. (z+x)(z+x+c) c. z(x+1)-Z a. 7(f+g-2)= b. (z+x)(z+x+c) = c. z(x+1)-z=
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:### Applying the Distributive Property
The task is to rename each expression using the distributive property of multiplication over addition so that there are no parentheses in the final answer. Simplify when possible.
1. **Expression: 7(f + g – 2)**
- Original: \( 7(f + g – 2) \)
- Apply the distributive property: \( 7 \cdot f + 7 \cdot g - 7 \cdot 2 \)
- Simplified: \( 7f + 7g - 14 \)
2. **Expression: (z + x)(z + x + c)**
- Original: \( (z + x)(z + x + c) \)
- Apply the distributive property:
- First, distribute \( (z + x) \) to each term inside the parentheses:
- \( (z + x)z + (z + x)x + (z + x)c \)
- Apply distributive property inside each term:
- \( z \cdot z + z \cdot x \)
- \( x \cdot z + x \cdot x \)
- \( z \cdot c + x \cdot c \)
- Combine these:
- \( z^2 + zx + xz + x^2 + zc + xc \)
- Notice \( zx \) and \( xz \) are the same:
- Final Simplified: \( z^2 + 2zx + x^2 + zc + xc \)
3. **Expression: z(x + 1) - z**
- Original: \( z(x + 1) - z \)
- Apply the distributive property:
- \( zx + z \cdot 1 - z \)
- Simplified: \( zx + z - z \)
- Remove like terms:
- Final Simplified: \( zx \)
### Final Expressions
a. \( 7(f + g – 2) = 7f + 7g - 14 \)
b. \( (z + x)(z + x + c) = z^2 + 2zx + x^2 + zc + xc \)
c. \( z(x + 1) - z = zx \)
These steps help in
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

