Rename each of the following using the distributive property of multiplication over addition so that there are no parentheses in the final answer. Simplify when possible. a. 7(f+g-2) b. (z+x)(z+x+c) c. z(x+1)-Z a. 7(f+g-2)= b. (z+x)(z+x+c) = c. z(x+1)-z=

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Applying the Distributive Property

The task is to rename each expression using the distributive property of multiplication over addition so that there are no parentheses in the final answer. Simplify when possible.

1. **Expression: 7(f + g – 2)**
   - Original: \( 7(f + g – 2) \)
   - Apply the distributive property: \( 7 \cdot f + 7 \cdot g - 7 \cdot 2 \)
   - Simplified: \( 7f + 7g - 14 \)

2. **Expression: (z + x)(z + x + c)**
   - Original: \( (z + x)(z + x + c) \)
   - Apply the distributive property: 
     - First, distribute \( (z + x) \) to each term inside the parentheses:
     - \( (z + x)z + (z + x)x + (z + x)c \)
     - Apply distributive property inside each term: 
       - \( z \cdot z + z \cdot x \)
       - \( x \cdot z + x \cdot x \)
       - \( z \cdot c + x \cdot c \)
     - Combine these:
     - \( z^2 + zx + xz + x^2 + zc + xc \)
     - Notice \( zx \) and \( xz \) are the same: 
     - Final Simplified: \( z^2 + 2zx + x^2 + zc + xc \)

3. **Expression: z(x + 1) - z**
   - Original: \( z(x + 1) - z \)
   - Apply the distributive property: 
     - \( zx + z \cdot 1 - z \)
     - Simplified: \( zx + z - z \)
     - Remove like terms:
     - Final Simplified: \( zx \)

### Final Expressions

a. \( 7(f + g – 2) = 7f + 7g - 14 \)

b. \( (z + x)(z + x + c) = z^2 + 2zx + x^2 + zc + xc \)

c. \( z(x + 1) - z = zx \)

These steps help in
Transcribed Image Text:### Applying the Distributive Property The task is to rename each expression using the distributive property of multiplication over addition so that there are no parentheses in the final answer. Simplify when possible. 1. **Expression: 7(f + g – 2)** - Original: \( 7(f + g – 2) \) - Apply the distributive property: \( 7 \cdot f + 7 \cdot g - 7 \cdot 2 \) - Simplified: \( 7f + 7g - 14 \) 2. **Expression: (z + x)(z + x + c)** - Original: \( (z + x)(z + x + c) \) - Apply the distributive property: - First, distribute \( (z + x) \) to each term inside the parentheses: - \( (z + x)z + (z + x)x + (z + x)c \) - Apply distributive property inside each term: - \( z \cdot z + z \cdot x \) - \( x \cdot z + x \cdot x \) - \( z \cdot c + x \cdot c \) - Combine these: - \( z^2 + zx + xz + x^2 + zc + xc \) - Notice \( zx \) and \( xz \) are the same: - Final Simplified: \( z^2 + 2zx + x^2 + zc + xc \) 3. **Expression: z(x + 1) - z** - Original: \( z(x + 1) - z \) - Apply the distributive property: - \( zx + z \cdot 1 - z \) - Simplified: \( zx + z - z \) - Remove like terms: - Final Simplified: \( zx \) ### Final Expressions a. \( 7(f + g – 2) = 7f + 7g - 14 \) b. \( (z + x)(z + x + c) = z^2 + 2zx + x^2 + zc + xc \) c. \( z(x + 1) - z = zx \) These steps help in
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,