Regarding the random (random) variables X and Y, given that Var (X + Y) = 2.89, Var (XY) = 2.81 and Var (X) = 2.01, what is Var (Y)? 7047944 10055587047944 0.83 870479447 0,21 g160100555- 987047944 97047944 555-987 0.84 g160100555 - 987047944 TO 87047944 0.89 g160100555 - 987047944 g160100555- 987047944 870479447 a160 100555 - 987047944 g160100555 - 987047944 87047944 g160100555 - 987047944 g160100555- 987047944 g160100555 - 987047944 g160100555 - 987047944
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
![g160
Regarding the
g160100555870479447
0.83
A
X and Y, given that Var (X + Y) = 2.89,
B
0,21
g160100555 - 987047944
87047944
g160 00555 - 987244
0.84
0.24
g160100555- 9870479447
2.81 and Var
TO
87047944 60
0.89
g160100555 - 987047944
7944
g160100555- 9870479447
g160100555- 9870479447
9160
g160100555 - 9870479447
87047944
79447
g160100555 - 987047944
79447
g160100555 - 987047944
g160100555 - 987047944
079447
g160100
g160100555- 9870479447
179447
g160100
79447](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe757ffb7-2112-492c-825b-c56f3498d561%2F7e23cc93-9d28-45b5-a09a-7e39bf4693c0%2Fpfrx84_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)