real estate analyst has developed a multiple regression line, y = 60 + 0.068 x1 – 2.5 x2, to predict y = the market price of a home (in $1,000s), using independent variables, x1 = the total number of square feet of living space, and x2 = the age of the house in years. The regression coefficient of x2 suggests this: __________. If the square feet area of living space is kept constant, a 1 year increase in the age of the homes will result in a predicted drop of $2500 in the price of the homes If the square feet area of living space is kept constant, a 1 year increase in the age of the homes will result in a predicted increase of $2500 in the price of the homes Whatever be the square feet area of the living space, a 1 year increase in the age of the homes will result in a predicted increase of $2500 in the price of the homes Whatever be the square feet area of the living space, a 1 year increase in the age of the homes will result in a predicted drop of $2500 in the price of the homes
Correlation
Correlation defines a relationship between two independent variables. It tells the degree to which variables move in relation to each other. When two sets of data are related to each other, there is a correlation between them.
Linear Correlation
A correlation is used to determine the relationships between numerical and categorical variables. In other words, it is an indicator of how things are connected to one another. The correlation analysis is the study of how variables are related.
Regression Analysis
Regression analysis is a statistical method in which it estimates the relationship between a dependent variable and one or more independent variable. In simple terms dependent variable is called as outcome variable and independent variable is called as predictors. Regression analysis is one of the methods to find the trends in data. The independent variable used in Regression analysis is named Predictor variable. It offers data of an associated dependent variable regarding a particular outcome.
A real estate analyst has developed a multiple regression line, y = 60 + 0.068 x1 – 2.5 x2, to predict y = the market price of a home (in $1,000s), using independent variables, x1 = the total number of square feet of living space, and x2 = the age of the house in years. The regression coefficient of x2 suggests this: __________.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps