rcos (y) dA, R= [-2, 3] × [0, ]. Evaluate R

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

I need help figuring this double integral out. 

### Double Integral Evaluation

Evaluate the double integral:

\[
\iint_R x \cos^2(y) \, dA
\]

where \( R = [-2, 3] \times \left[0, \frac{\pi}{2}\right] \).

#### Description:

The problem asks for the evaluation of a double integral over the rectangular region \( R \) in the xy-plane. The function to be integrated is \( x \cos^2(y) \).

- **Limits for \( x \):** from \(-2\) to \(3\)
- **Limits for \( y \):** from \(0\) to \(\frac{\pi}{2}\)

#### Approach:

1. **Set up the Integral:**

   \[
   \int_{0}^{\frac{\pi}{2}} \int_{-2}^{3} x \cos^2(y) \, dx \, dy
   \]

2. **Inner Integral:** Integrate with respect to \( x \) first.

3. **Outer Integral:** Integrate the resulting expression with respect to \( y \). 

This integral evaluates the accumulated value of \( x \cos^2(y) \) over the specified region in the xy-plane.
Transcribed Image Text:### Double Integral Evaluation Evaluate the double integral: \[ \iint_R x \cos^2(y) \, dA \] where \( R = [-2, 3] \times \left[0, \frac{\pi}{2}\right] \). #### Description: The problem asks for the evaluation of a double integral over the rectangular region \( R \) in the xy-plane. The function to be integrated is \( x \cos^2(y) \). - **Limits for \( x \):** from \(-2\) to \(3\) - **Limits for \( y \):** from \(0\) to \(\frac{\pi}{2}\) #### Approach: 1. **Set up the Integral:** \[ \int_{0}^{\frac{\pi}{2}} \int_{-2}^{3} x \cos^2(y) \, dx \, dy \] 2. **Inner Integral:** Integrate with respect to \( x \) first. 3. **Outer Integral:** Integrate the resulting expression with respect to \( y \). This integral evaluates the accumulated value of \( x \cos^2(y) \) over the specified region in the xy-plane.
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning