rc consistency in constrained satisfaction problems Suppose that we have three variables X1, X2 and X3, which are defined on the same domain of {1, 2, 3}. Two binary constraints for these three variables are defined according to the following: 1. Is X1 arc-consistent with respect to X2? And is X1 arc-consistent with respect to X3? and why? In addition, is X3 arc-consistent with respect X1 if the constraints between R1 and R3 are undirected (i.e., R31 is defined as {(X3, X1), [(2, 1),(1, 2),(1, 3),(3, 3)]} that switches the element order of every two-tuple of R13)? and why? 2. Suppose that, after some inference, the domain of X1 is reduced as {2, 3} and the constrains in R12 and R13 for X1 = 1 are removed accordingly. To be more specific, (1, 2) is removed from R13 due to reducing the domain of X1. Now is X1 still arc-consistent with respect to X2? And is X1 arc-consistent with respect to X3? and why? In addition, is X3 still arc-con
Arc consistency in constrained satisfaction problems
Suppose that we have three variables X1, X2 and X3, which are defined on the same domain of {1, 2, 3}. Two binary constraints for these three variables are defined according to the following:
1. Is X1 arc-consistent with respect to X2? And is X1 arc-consistent with respect to X3? and why? In addition, is X3 arc-consistent with respect X1 if the constraints between R1 and R3 are undirected (i.e., R31 is defined as {(X3, X1), [(2, 1),(1, 2),(1, 3),(3, 3)]} that switches the element order of every two-tuple of R13)? and why?
2. Suppose that, after some inference, the domain of X1 is reduced as {2, 3} and the constrains in R12 and R13 for X1 = 1 are removed accordingly. To be more specific, (1, 2) is removed from R13 due to reducing the domain of X1. Now is X1 still arc-consistent with respect to X2? And is X1 arc-consistent with respect to X3? and why? In addition, is X3 still arc-consistent with respect X1 if the constraints between R1 and R3 are undirected? and why?
![R12 = {(X1, X2) , [(2, 1) , (2, 3) , (3, 2) , (3, 3)]}
R13 = {(X1, X3) , [(1,2) , (2, 1) , (3, 1) , (3, 3)]}
6.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F83c8ca58-81c1-42f4-870c-ac2dfa1eaf0d%2Fb9af1be3-d241-47c4-ac47-92cc9aed7f95%2Fq61aqr3_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Computer Networking: A Top-Down Approach (7th Edi…](https://www.bartleby.com/isbn_cover_images/9780133594140/9780133594140_smallCoverImage.gif)
![Computer Organization and Design MIPS Edition, Fi…](https://www.bartleby.com/isbn_cover_images/9780124077263/9780124077263_smallCoverImage.gif)
![Network+ Guide to Networks (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337569330/9781337569330_smallCoverImage.gif)
![Computer Networking: A Top-Down Approach (7th Edi…](https://www.bartleby.com/isbn_cover_images/9780133594140/9780133594140_smallCoverImage.gif)
![Computer Organization and Design MIPS Edition, Fi…](https://www.bartleby.com/isbn_cover_images/9780124077263/9780124077263_smallCoverImage.gif)
![Network+ Guide to Networks (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337569330/9781337569330_smallCoverImage.gif)
![Concepts of Database Management](https://www.bartleby.com/isbn_cover_images/9781337093422/9781337093422_smallCoverImage.gif)
![Prelude to Programming](https://www.bartleby.com/isbn_cover_images/9780133750423/9780133750423_smallCoverImage.jpg)
![Sc Business Data Communications and Networking, T…](https://www.bartleby.com/isbn_cover_images/9781119368830/9781119368830_smallCoverImage.gif)