Rationalize the denominator and simpify: 4+3√x 8+√√x

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem:**

Rationalize the denominator and simplify:

\[
\frac{4 + 3\sqrt{x}}{8 + \sqrt{x}}
\]

**Solution Explanation:**

To rationalize the denominator of the fraction, multiply both the numerator and the denominator by the conjugate of the denominator, which is \(8 - \sqrt{x}\).

**Step 1:** Multiply the numerator and denominator by the conjugate.

\[
\frac{(4 + 3\sqrt{x})(8 - \sqrt{x})}{(8 + \sqrt{x})(8 - \sqrt{x})}
\]

**Step 2:** Apply the difference of squares formula to the denominator.

The formula for the difference of squares is:

\[
(a + b)(a - b) = a^2 - b^2
\]

Here, \(a = 8\) and \(b = \sqrt{x}\),

\[
(8)^2 - (\sqrt{x})^2 = 64 - x
\]

**Step 3:** Expand the numerator.

Use the distributive property to expand \( (4 + 3\sqrt{x})(8 - \sqrt{x}) \).

\[
= 4 \cdot 8 - 4 \cdot \sqrt{x} + 3\sqrt{x} \cdot 8 - 3\sqrt{x} \cdot \sqrt{x}
\]

Simplify each term:

\[
= 32 - 4\sqrt{x} + 24\sqrt{x} - 3x
\]

Combine like terms:

\[
= 32 + 20\sqrt{x} - 3x
\]

**Final Result:** 

After rationalizing and simplifying, the expression becomes:

\[
\frac{32 + 20\sqrt{x} - 3x}{64 - x}
\]

This simplified form can be further evaluated or used as needed in calculations.
Transcribed Image Text:**Problem:** Rationalize the denominator and simplify: \[ \frac{4 + 3\sqrt{x}}{8 + \sqrt{x}} \] **Solution Explanation:** To rationalize the denominator of the fraction, multiply both the numerator and the denominator by the conjugate of the denominator, which is \(8 - \sqrt{x}\). **Step 1:** Multiply the numerator and denominator by the conjugate. \[ \frac{(4 + 3\sqrt{x})(8 - \sqrt{x})}{(8 + \sqrt{x})(8 - \sqrt{x})} \] **Step 2:** Apply the difference of squares formula to the denominator. The formula for the difference of squares is: \[ (a + b)(a - b) = a^2 - b^2 \] Here, \(a = 8\) and \(b = \sqrt{x}\), \[ (8)^2 - (\sqrt{x})^2 = 64 - x \] **Step 3:** Expand the numerator. Use the distributive property to expand \( (4 + 3\sqrt{x})(8 - \sqrt{x}) \). \[ = 4 \cdot 8 - 4 \cdot \sqrt{x} + 3\sqrt{x} \cdot 8 - 3\sqrt{x} \cdot \sqrt{x} \] Simplify each term: \[ = 32 - 4\sqrt{x} + 24\sqrt{x} - 3x \] Combine like terms: \[ = 32 + 20\sqrt{x} - 3x \] **Final Result:** After rationalizing and simplifying, the expression becomes: \[ \frac{32 + 20\sqrt{x} - 3x}{64 - x} \] This simplified form can be further evaluated or used as needed in calculations.
Expert Solution
Step 1

The given expression 4+3x8+x

We have to rationalize the denominator.

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning