=r =yx* +y° Now use the idetitity sec(0) cos(0) cos(0) 3 -2+ cos(0) cos (0) -2 cos (0) +3 cos (0) cos (0) a d Use cos (0)" -2cos(0)+3| -2 cos (0) +3 -2 cos(0)+3 Step 2 Now multiply both sides by (-2 cos(0)+3) and further simplify it r(-2cos(0) + 3)= ·(-2cos(0)+3) (-2cos(0)+3) r(-2cos(0)+3)=6 Now clear the parenthesis and the multiply -2r cos(0)+3r = 6 Substitute rcos (0) =x and r = Vx² +y² -2.x + 3/x² + y° = 6 Which is required cartesian form. UIVei polar equauon is r -2+3 sec e) Note that x=rcos 0, y =r sino. Obtain r =. r(-2+3sec 0) = 6 sece -2r + 3r sece =6 sec e Зr -2r + cos e -2r cos 0 +3r cos 0 -2x+3r = 6sec ecose -2x+3r = 6 Зr 3D6-2х Step 2 On further simplification, 6sec 0 -2+3 sece 6-2х) (x+y)* -( 36- 24x +4x x* +y° +2xy = 9x +9y² +18xy = 36 – 24x + 4x² 5x3 +9у? +18ху+ 24х-36%3D0 Thus, the Cartesian equation is 5x +9y* +18y+24x- 36 = 0.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%

I asked the same question twice on Bartleby and received two different solutions, and I just need to know which one is correct, the original problem is this: 

Convert the given polar equation into an equation in terms of Cartesian coordinates.

r = (6sec(theta))/(−2 + 3sec(theta))

And screenshots of the two answers I received are attached.

=r =yx* +y°
Now use the idetitity sec(0)
cos(0)
cos(0)
3
-2+
cos(0)
cos (0)
-2 cos (0) +3
cos (0)
cos (0)
a d
Use
cos (0)" -2cos(0)+3|
-2 cos (0) +3
-2 cos(0)+3
Step 2
Now multiply both sides by (-2 cos(0)+3) and further simplify it
r(-2cos(0) + 3)=
·(-2cos(0)+3)
(-2cos(0)+3)
r(-2cos(0)+3)=6
Now clear the parenthesis and the multiply
-2r cos(0)+3r = 6
Substitute rcos (0) =x and r = Vx² +y²
-2.x + 3/x² + y° = 6
Which is required cartesian form.
Transcribed Image Text:=r =yx* +y° Now use the idetitity sec(0) cos(0) cos(0) 3 -2+ cos(0) cos (0) -2 cos (0) +3 cos (0) cos (0) a d Use cos (0)" -2cos(0)+3| -2 cos (0) +3 -2 cos(0)+3 Step 2 Now multiply both sides by (-2 cos(0)+3) and further simplify it r(-2cos(0) + 3)= ·(-2cos(0)+3) (-2cos(0)+3) r(-2cos(0)+3)=6 Now clear the parenthesis and the multiply -2r cos(0)+3r = 6 Substitute rcos (0) =x and r = Vx² +y² -2.x + 3/x² + y° = 6 Which is required cartesian form.
UIVei polar equauon is r
-2+3 sec e)
Note that x=rcos 0, y =r sino.
Obtain r =.
r(-2+3sec 0) = 6 sece
-2r + 3r sece =6 sec e
Зr
-2r +
cos e
-2r cos 0 +3r
cos 0
-2x+3r = 6sec ecose
-2x+3r = 6
Зr 3D6-2х
Step 2
On further simplification,
6sec 0
-2+3 sece
6-2х)
(x+y)* -(
36- 24x +4x
x* +y° +2xy =
9x +9y² +18xy = 36 – 24x + 4x²
5x3 +9у? +18ху+ 24х-36%3D0
Thus, the Cartesian equation is 5x +9y* +18y+24x- 36 = 0.
Transcribed Image Text:UIVei polar equauon is r -2+3 sec e) Note that x=rcos 0, y =r sino. Obtain r =. r(-2+3sec 0) = 6 sece -2r + 3r sece =6 sec e Зr -2r + cos e -2r cos 0 +3r cos 0 -2x+3r = 6sec ecose -2x+3r = 6 Зr 3D6-2х Step 2 On further simplification, 6sec 0 -2+3 sece 6-2х) (x+y)* -( 36- 24x +4x x* +y° +2xy = 9x +9y² +18xy = 36 – 24x + 4x² 5x3 +9у? +18ху+ 24х-36%3D0 Thus, the Cartesian equation is 5x +9y* +18y+24x- 36 = 0.
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Polar Equations of Conics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning