R L (3)1 The electric circuit shown above is described by the system of differential equations: 0 d dt V RC where I is the current through the inductance and V is the voltage drop across the capacitor. The system can be derived using Kirchoff's Laws and definitions of resistance (R), inductance (L), and capacitance (C). We will take it as a given! (a) Show that the eigenvalues of the coefficient matrix are real and distinct if L> 4R2C and that they are complex and conjugate if L< 4R2C.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Linear/differencial

R
L
(3)1 The electric circuit shown above is described by the system of differential equations:
0
d
dt V
RC
where I is the current through the inductance and V is the voltage drop across the capacitor. The
system can be derived using Kirchoff's Laws and definitions of resistance (R), inductance (L), and
capacitance (C). We will take it as a given!
(a) Show that the eigenvalues of the coefficient matrix are real and distinct if L> 4R2C and that
they are complex and conjugate if L< 4R2C.
Transcribed Image Text:R L (3)1 The electric circuit shown above is described by the system of differential equations: 0 d dt V RC where I is the current through the inductance and V is the voltage drop across the capacitor. The system can be derived using Kirchoff's Laws and definitions of resistance (R), inductance (L), and capacitance (C). We will take it as a given! (a) Show that the eigenvalues of the coefficient matrix are real and distinct if L> 4R2C and that they are complex and conjugate if L< 4R2C.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Polynomial
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,