Question1: Find all the eigenvalues for the matrix A below 2 -1 0 A=-1 2 -1 0 -1 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Chapter 7: Eigenvalues
Question1: Find all the eigenvalues for the matrix A below Solution:
-1
Power Method:
max
A =-1 2 -1
[A VjT
absolute
value
No
error
0 -1 2
0.0000
1.0000
0.0000
-1.0000
2.0000
-1.0000
2.0000
Solution:
The characteristic equation A-A1=0 is
2.
|2-2
-1
3
-1
2-2
-il=0
4
-1 2-a
5
6.
-0.7071
1.0000
0.7071-24141
3.4141
-2.4141
3.4141
0.0003
Cubic polynomial:
(2-4)[(2-4)(2-4)-(-19(-1)]
-(-1D[(-1)(2-2)-(-1)(0)]
+o[(-1)(-1)-(2-2)(0)]=0
-12' +62-_A+_=0
0.7071 1.0000
-0.7071
The dominant eigenvalue is 3.4142
And its corresponding eigenvector is (-0,7071 1 -0.7071)'
Solution:
Inverse Power Method:
"EQN - DEGREE → 3"
. Eigenvalue 1=3.4142
Eigenvalue 2=-2
Eigenvalue 3=
(0.75 0.5 0.25
A= 0.51
0.25 0.5 0.75
0.5
max
No
[A VT
absolute
value
error
Question 2:
Given the matrix
0.0000
1.0000
0.0000
0.5000
1.0000 0.5000
1.0000
2 -1 0
A= -1 2 -1
0 -1
2
3.
Use the power method to find the dominant eigenvalues,
A / the smallest eigenvalues, 2 and its corresponding
cigenvector, v, for the matrix A using V° = (0 1 0).
Stop the iteration until |4-A|s0.005
6.
0.7071
1.0000
0.7071
1.2071
L7071
1.2071
1.7071
0.0002
0.7071 L0000 0.7071
The dominant cigenvalue is 1/1.7071. And its corre sponding cigenvector is (0.7071 1 07071)
* * * * x>>
Transcribed Image Text:Chapter 7: Eigenvalues Question1: Find all the eigenvalues for the matrix A below Solution: -1 Power Method: max A =-1 2 -1 [A VjT absolute value No error 0 -1 2 0.0000 1.0000 0.0000 -1.0000 2.0000 -1.0000 2.0000 Solution: The characteristic equation A-A1=0 is 2. |2-2 -1 3 -1 2-2 -il=0 4 -1 2-a 5 6. -0.7071 1.0000 0.7071-24141 3.4141 -2.4141 3.4141 0.0003 Cubic polynomial: (2-4)[(2-4)(2-4)-(-19(-1)] -(-1D[(-1)(2-2)-(-1)(0)] +o[(-1)(-1)-(2-2)(0)]=0 -12' +62-_A+_=0 0.7071 1.0000 -0.7071 The dominant eigenvalue is 3.4142 And its corresponding eigenvector is (-0,7071 1 -0.7071)' Solution: Inverse Power Method: "EQN - DEGREE → 3" . Eigenvalue 1=3.4142 Eigenvalue 2=-2 Eigenvalue 3= (0.75 0.5 0.25 A= 0.51 0.25 0.5 0.75 0.5 max No [A VT absolute value error Question 2: Given the matrix 0.0000 1.0000 0.0000 0.5000 1.0000 0.5000 1.0000 2 -1 0 A= -1 2 -1 0 -1 2 3. Use the power method to find the dominant eigenvalues, A / the smallest eigenvalues, 2 and its corresponding cigenvector, v, for the matrix A using V° = (0 1 0). Stop the iteration until |4-A|s0.005 6. 0.7071 1.0000 0.7071 1.2071 L7071 1.2071 1.7071 0.0002 0.7071 L0000 0.7071 The dominant cigenvalue is 1/1.7071. And its corre sponding cigenvector is (0.7071 1 07071) * * * * x>>
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,