Question II: 1. Show that Q(√2, √5) = Q(√2+ √5). 2. Find [Q(√2, √5): Q] and describe the elements of Q(√2, √5) over Q. 3. Deduce √2 + √5 is algebraic over Q.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
galpis theoream algebra part 1 2 3 4
Question II:
1. Show that Q(√2, √5) = Q(√2 + √5).
2. Find [Q(√2,√5): Q] and describe the elements of Q(√2, √5) over Q.
3. Deduce √2 + √5 is algebraic over Q.
4. Find Gal(Q(√2,√5)/Q).
5. Is Gal(Q(√2, √5)/Q) cyclic? Abelian?Justify.
6. Let H be a subgroup of Gal(E/Q). find EH.
7. Draw the lattice of subgroups of Gal (E/Q). Deduce all subfields of Q(√2, √5).
8. Deduce | Gal(Q(√10/Q)|.
Transcribed Image Text:Question II: 1. Show that Q(√2, √5) = Q(√2 + √5). 2. Find [Q(√2,√5): Q] and describe the elements of Q(√2, √5) over Q. 3. Deduce √2 + √5 is algebraic over Q. 4. Find Gal(Q(√2,√5)/Q). 5. Is Gal(Q(√2, √5)/Q) cyclic? Abelian?Justify. 6. Let H be a subgroup of Gal(E/Q). find EH. 7. Draw the lattice of subgroups of Gal (E/Q). Deduce all subfields of Q(√2, √5). 8. Deduce | Gal(Q(√10/Q)|.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,