Question Given that sin(0) = . and is in Quadrant II, what is cos(20)? Provide your answer below: cos (20)= Content attribution Q Search hp FEEDE

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
### Trigonometry Question:

#### Problem Statement:
Given that \( \sin(\theta) = \frac{4}{5} \) and \( \theta \) is in Quadrant II, what is \( \cos(2\theta) \)?

#### Solution:

**Step 1: Determine \(\cos(\theta)\) in Quadrant II:**

In Quadrant II, \(\cos(\theta)\) is negative. Using the Pythagorean identity \(\sin^2(\theta) + \cos^2(\theta) = 1\):

\[
\sin(\theta) = \frac{4}{5}
\]

\[
\sin^2(\theta) = \left(\frac{4}{5}\right)^2 = \frac{16}{25}
\]

\[
\cos^2(\theta) = 1 - \sin^2(\theta) = 1 - \frac{16}{25} = \frac{9}{25}
\]

Since \(\theta\) is in Quadrant II, \(\cos(\theta)\) is negative:

\[
\cos(\theta) = -\sqrt{\frac{9}{25}} = -\frac{3}{5}
\]

**Step 2: Calculate \(\cos(2\theta)\) using the double-angle formula:**

The double-angle formula for cosine is:

\[
\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)
\]

Substitute the `values`:

\[
\cos(2\theta) = \left(-\frac{3}{5}\right)^2 - \left(\frac{4}{5}\right)^2 = \frac{9}{25} - \frac{16}{25} = \frac{9 - 16}{25} = -\frac{7}{25}
\]

**Step 3: Answer the Question:**

Therefore, the value of \( \cos(2\theta) \) is:

\[
\cos(2\theta) = -\frac{7}{25}
\]

#### Answer Submission:
cos(2θ) = **-7/25**

Feel free to use the feedback option if you have any questions or need further assistance!
Transcribed Image Text:### Trigonometry Question: #### Problem Statement: Given that \( \sin(\theta) = \frac{4}{5} \) and \( \theta \) is in Quadrant II, what is \( \cos(2\theta) \)? #### Solution: **Step 1: Determine \(\cos(\theta)\) in Quadrant II:** In Quadrant II, \(\cos(\theta)\) is negative. Using the Pythagorean identity \(\sin^2(\theta) + \cos^2(\theta) = 1\): \[ \sin(\theta) = \frac{4}{5} \] \[ \sin^2(\theta) = \left(\frac{4}{5}\right)^2 = \frac{16}{25} \] \[ \cos^2(\theta) = 1 - \sin^2(\theta) = 1 - \frac{16}{25} = \frac{9}{25} \] Since \(\theta\) is in Quadrant II, \(\cos(\theta)\) is negative: \[ \cos(\theta) = -\sqrt{\frac{9}{25}} = -\frac{3}{5} \] **Step 2: Calculate \(\cos(2\theta)\) using the double-angle formula:** The double-angle formula for cosine is: \[ \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \] Substitute the `values`: \[ \cos(2\theta) = \left(-\frac{3}{5}\right)^2 - \left(\frac{4}{5}\right)^2 = \frac{9}{25} - \frac{16}{25} = \frac{9 - 16}{25} = -\frac{7}{25} \] **Step 3: Answer the Question:** Therefore, the value of \( \cos(2\theta) \) is: \[ \cos(2\theta) = -\frac{7}{25} \] #### Answer Submission: cos(2θ) = **-7/25** Feel free to use the feedback option if you have any questions or need further assistance!
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning