Question For the function f(x): = Provide your answer below: a. lim f(x) = x → 5 b. lim f(x) = x → 5+ (2x² - 4x -4x3 X 4.9 4.99 4.999 4.9999 4.99999 if x < 5 if x ≥ 5' evaluate the left and right limits using the table shown below. 2x² - 4x X -4x - 3 28.42 5.1 -23.4 29.8402 5.01 -23.04 29.984002 5.001 -23.004 29.99840002 5.0001 -23.0004 29.9998400002 5.00001 -23.00004

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
### Question

For the function \( f(x) = 
\begin{cases} 
2x^2 - 4x & \text{if } x < 5 \\
-4x - 3 & \text{if } x \geq 5 
\end{cases} \), evaluate the left and right limits using the table shown below.

| \( x \)       | \( 2x^2 - 4x \)       | \( x \)     | \( -4x - 3 \) |
| ------------- | --------------------- | ----------- | ------------- |
| 4.9           | 28.42                 | 5.1         | -23.4         |
| 4.99          | 29.8402               | 5.01        | -23.04        |
| 4.999         | 29.984002             | 5.001       | -23.004       |
| 4.9999        | 29.99840002           | 5.0001      | -23.0004      |
| 4.99999       | 29.9998400002         | 5.00001     | -23.00004     |

**Provide your answer below:**

a. \( \lim_{x \to 5^-} f(x) = \) [ ]

b. \( \lim_{x \to 5^+} f(x) = \) [ ]
Transcribed Image Text:### Question For the function \( f(x) = \begin{cases} 2x^2 - 4x & \text{if } x < 5 \\ -4x - 3 & \text{if } x \geq 5 \end{cases} \), evaluate the left and right limits using the table shown below. | \( x \) | \( 2x^2 - 4x \) | \( x \) | \( -4x - 3 \) | | ------------- | --------------------- | ----------- | ------------- | | 4.9 | 28.42 | 5.1 | -23.4 | | 4.99 | 29.8402 | 5.01 | -23.04 | | 4.999 | 29.984002 | 5.001 | -23.004 | | 4.9999 | 29.99840002 | 5.0001 | -23.0004 | | 4.99999 | 29.9998400002 | 5.00001 | -23.00004 | **Provide your answer below:** a. \( \lim_{x \to 5^-} f(x) = \) [ ] b. \( \lim_{x \to 5^+} f(x) = \) [ ]
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning