? Question Draw the gradient f( − 1, 1), starting at ( − 1, 1), on the contour map of f(x, y) = xy. The contour map should have x and y in [ – 2, 2]. What is the point where the tip of the gradient ends? - (Give the point in traditional notation.) Hint
? Question Draw the gradient f( − 1, 1), starting at ( − 1, 1), on the contour map of f(x, y) = xy. The contour map should have x and y in [ – 2, 2]. What is the point where the tip of the gradient ends? - (Give the point in traditional notation.) Hint
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Question
Draw the gradient \( \vec{\nabla} f(-1,1) \), starting at \((-1,1)\), on the contour map of \( f(x,y) = xy \). The contour map should have \( x \) and \( y \) in \([-2, 2]\). What is the point where the tip of the gradient ends?
(Note: Give the point in traditional notation.)
### Hint
To determine where the tip of the gradient ends, follow these steps:
1. **Calculate the Gradient**: Calculate the gradient vector \( \vec{\nabla} f(x,y) \) of the function \( f(x, y) = xy \).
2. **Evaluate at Given Point**: Evaluate the gradient vector at the point \((-1,1)\).
3. **Graphical Representation**: Draw this evaluated gradient vector on the contour map of \( f(x,y) \).
4. **Determine the End Point**: Identify the coordinates of the tip of the gradient vector.
The contour map of \( f(x,y) = xy \) should depict a grid with \( x \) and \( y \) ranging from \([-2, 2]\). Ensure to mark the evaluated points clearly and show the direction of the gradient vector.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F74b6836e-7075-4604-8b7e-b1441272473c%2F2e2accff-6ff5-44bd-8fa7-63c522470598%2Fqnldm1_processed.png&w=3840&q=75)
Transcribed Image Text:### Question
Draw the gradient \( \vec{\nabla} f(-1,1) \), starting at \((-1,1)\), on the contour map of \( f(x,y) = xy \). The contour map should have \( x \) and \( y \) in \([-2, 2]\). What is the point where the tip of the gradient ends?
(Note: Give the point in traditional notation.)
### Hint
To determine where the tip of the gradient ends, follow these steps:
1. **Calculate the Gradient**: Calculate the gradient vector \( \vec{\nabla} f(x,y) \) of the function \( f(x, y) = xy \).
2. **Evaluate at Given Point**: Evaluate the gradient vector at the point \((-1,1)\).
3. **Graphical Representation**: Draw this evaluated gradient vector on the contour map of \( f(x,y) \).
4. **Determine the End Point**: Identify the coordinates of the tip of the gradient vector.
The contour map of \( f(x,y) = xy \) should depict a grid with \( x \) and \( y \) ranging from \([-2, 2]\). Ensure to mark the evaluated points clearly and show the direction of the gradient vector.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning