Question A10 The photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E < hf – W, where h is Planck's constant, f is the frequency of the light, and W is the work-function. Silver has a work function that varies with the state of the surface. A piece of silver is illuminated by a mercury lamp giving monochromatic UVC light at 253.7 nm wavelength. Photoelectrons are detected for applied stopping potentials up to 626.5 mV, above which no photoelectrons are observed. a) Calculate the work-function of the silver. Calculate the maximum speed of the emitted photoelectrons when no stopping potential is b) applied.
Question A10 The photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E < hf – W, where h is Planck's constant, f is the frequency of the light, and W is the work-function. Silver has a work function that varies with the state of the surface. A piece of silver is illuminated by a mercury lamp giving monochromatic UVC light at 253.7 nm wavelength. Photoelectrons are detected for applied stopping potentials up to 626.5 mV, above which no photoelectrons are observed. a) Calculate the work-function of the silver. Calculate the maximum speed of the emitted photoelectrons when no stopping potential is b) applied.
Related questions
Question
q10
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images