Question 6 Use the plots to approximate g(t)dt with LEFT(2) and RIGHT(2). Illustrate the rule and compute the approximation to verify the correct answer. O T9(1) g(t) 11 10 9 8 7 6 9(1) dt ~MID(O) = Tos 3 2 1 0 -2 -1 0 1 g(t)dt 9 g(t)dt MID(O) = 36 901 g(t)dt MID(0) = 8 and 32 g(t)dt MID(O) = 20 g(t)dt MID(0)=30 LIT 2 t and and and and arwus 1 3 4 5 6 [9(1) g(t)dt ≈ TRAP(O) = 12 6. g(t)dt TRAP(O) = 28 g(t)dt = TRAP(0) = 34. [20 g(t)dt TRAP(O) = 20 g(t)dt ≈ TRAP(O) = 30 arra TRAP(O) = 26.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Question 6
Use the plots to approximate
S
g(t)dt with LEFT(2) and RIGHT(2). Illustrate
the rule and compute the approximation to verify the correct answer.
f(t)
[9(1) dt
g(t)
Tg(t
To
11
10
9
8
7
6
g(t)dt MID(O) = 32
5
4
3
2
g(t)dt
1
0
-2 -1 0 1
90²
g(t)dt MID(0) = 8 and
g(t)dt MID(O) = 36
g(t)dt MID(O) = 20
2
t
and
LIT
and
g(t)dt MID(0)=30 and
and
awwur
3
4
5 6
²9(1)
g(t)dt TRAP(O) = 28
Log(t).
g(t)dt TRAP(O) = 12
g(t) a
g(t)dt TRAP(O) = 34.
9(t)dt = TRAP(O) = 20
[g(t)
g(t)dt TRAP(O) = 30
arr
TRAP(O) = 26.
Transcribed Image Text:Question 6 Use the plots to approximate S g(t)dt with LEFT(2) and RIGHT(2). Illustrate the rule and compute the approximation to verify the correct answer. f(t) [9(1) dt g(t) Tg(t To 11 10 9 8 7 6 g(t)dt MID(O) = 32 5 4 3 2 g(t)dt 1 0 -2 -1 0 1 90² g(t)dt MID(0) = 8 and g(t)dt MID(O) = 36 g(t)dt MID(O) = 20 2 t and LIT and g(t)dt MID(0)=30 and and awwur 3 4 5 6 ²9(1) g(t)dt TRAP(O) = 28 Log(t). g(t)dt TRAP(O) = 12 g(t) a g(t)dt TRAP(O) = 34. 9(t)dt = TRAP(O) = 20 [g(t) g(t)dt TRAP(O) = 30 arr TRAP(O) = 26.
Expert Solution
steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,