Question 6: Let V be a vector space over R, and let T: V→ R4 be a linear map. Suppose 01, 02, 03, 04 € V are such that T(₁) = (1,0,0,0), T(7₂) = (1,1,0,0), T(73) = (1,1,1,0), T(4) = (1,1,1,1). Prove that dim(V) > 4.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please solve
### Linear Map and Vector Space Dimensions

**Question 6:**

Let \( V \) be a vector space over \( \mathbb{R} \), and let \( T : V \to \mathbb{R}^4 \) be a linear map. Suppose \( \vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \in V \) are such that

\[ T(\vec{v}_1) = (1, 0, 0, 0), \]
\[ T(\vec{v}_2) = (1, 1, 0, 0), \]
\[ T(\vec{v}_3) = (1, 1, 1, 0), \]
\[ T(\vec{v}_4) = (1, 1, 1, 1). \]

Prove that \( \dim(V) \geq 4 \).
Transcribed Image Text:### Linear Map and Vector Space Dimensions **Question 6:** Let \( V \) be a vector space over \( \mathbb{R} \), and let \( T : V \to \mathbb{R}^4 \) be a linear map. Suppose \( \vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \in V \) are such that \[ T(\vec{v}_1) = (1, 0, 0, 0), \] \[ T(\vec{v}_2) = (1, 1, 0, 0), \] \[ T(\vec{v}_3) = (1, 1, 1, 0), \] \[ T(\vec{v}_4) = (1, 1, 1, 1). \] Prove that \( \dim(V) \geq 4 \).
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,