QUESTION 4 Problem For a projectile lunched with an initial velocity of vo at an angle of e (between 0 and 900), a) derive the general expression for maximum height hmax and the horizontal range R. b) For what value of 0 gives the highest maximum height? Solution The components of vo are expressed as follows: Vinitial-x = Vocos(0) Vinitial-y = vosin(0) a) Let us first find the time it takes for the projectile to reach the maximum height. Using: Vfinal-y = Vinitial-y + ayt since the y-axis velocity of the projectile at the maximum height is Vfinal-y = Then, = Vinitial-y + ayt Substituting the expression of vinitial-y and ay = -g, results to the following: Thus, the time to reach the maximum height is tmax-height = We will use this time to the equation Yfinal - Yinitial = Vinitial-yt + (1/2)ayt if we use the time taken to reach the maximum height, therefore, the displacement will yield the maximum height, so hmax = Vinitial-yt + (1/2)ayt2 substituting, the Vịnitial-y expression above, results to the following hmax = t+ (1/2)ayt? Then, substituting the time, results to the following
QUESTION 4 Problem For a projectile lunched with an initial velocity of vo at an angle of e (between 0 and 900), a) derive the general expression for maximum height hmax and the horizontal range R. b) For what value of 0 gives the highest maximum height? Solution The components of vo are expressed as follows: Vinitial-x = Vocos(0) Vinitial-y = vosin(0) a) Let us first find the time it takes for the projectile to reach the maximum height. Using: Vfinal-y = Vinitial-y + ayt since the y-axis velocity of the projectile at the maximum height is Vfinal-y = Then, = Vinitial-y + ayt Substituting the expression of vinitial-y and ay = -g, results to the following: Thus, the time to reach the maximum height is tmax-height = We will use this time to the equation Yfinal - Yinitial = Vinitial-yt + (1/2)ayt if we use the time taken to reach the maximum height, therefore, the displacement will yield the maximum height, so hmax = Vinitial-yt + (1/2)ayt2 substituting, the Vịnitial-y expression above, results to the following hmax = t+ (1/2)ayt? Then, substituting the time, results to the following
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Concept explainers
Topic Video
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON