Question 4: Let V and W be vector spaces over R, and let T: V → W be a linear map. Suppose 7 € V is a vector such that T(7) + T() = Öw. Prove that 7 € Nul(T).
Question 4: Let V and W be vector spaces over R, and let T: V → W be a linear map. Suppose 7 € V is a vector such that T(7) + T() = Öw. Prove that 7 € Nul(T).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please solve problem 4
![### Question 4:
Let \( V \) and \( W \) be vector spaces over \( \mathbb{R} \), and let \( T: V \to W \) be a linear map. Suppose \( \vec{v} \in V \) is a vector such that \( T(\vec{v}) + T(\vec{v}) = \vec{0}_W \). Prove that \( \vec{v} \in \text{Nul}(T) \).
**Explanation:**
- \( V \) and \( W \) are vector spaces over the real numbers \( \mathbb{R} \).
- \( T \) is a linear map from vector space \( V \) to vector space \( W \).
- \( \vec{v} \in V \) is a vector such that when applied to \( T \), the sum of \( T(\vec{v}) \) with itself equals the zero vector \( \vec{0}_W \) in \( W \).
You are required to prove that \( \vec{v} \) lies in the null space of \( T \), denoted \( \text{Nul}(T) \). The null space is the set of all vectors \( \vec{v} \) in \( V \) such that \( T(\vec{v}) = \vec{0}_W \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3cf4b148-a9ff-447b-bf88-730c6d11afaf%2Fb7f901bc-8680-42c9-9479-bec8d4593c88%2Fywirz2k_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Question 4:
Let \( V \) and \( W \) be vector spaces over \( \mathbb{R} \), and let \( T: V \to W \) be a linear map. Suppose \( \vec{v} \in V \) is a vector such that \( T(\vec{v}) + T(\vec{v}) = \vec{0}_W \). Prove that \( \vec{v} \in \text{Nul}(T) \).
**Explanation:**
- \( V \) and \( W \) are vector spaces over the real numbers \( \mathbb{R} \).
- \( T \) is a linear map from vector space \( V \) to vector space \( W \).
- \( \vec{v} \in V \) is a vector such that when applied to \( T \), the sum of \( T(\vec{v}) \) with itself equals the zero vector \( \vec{0}_W \) in \( W \).
You are required to prove that \( \vec{v} \) lies in the null space of \( T \), denoted \( \text{Nul}(T) \). The null space is the set of all vectors \( \vec{v} \) in \( V \) such that \( T(\vec{v}) = \vec{0}_W \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)