Question 3. For k e N, define S = > (2') = 2+ 22 + 2³ + · .. + 2*. i=1 Prove Vn E N, S2n = 0 mod 3.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Question 3.** For \( k \in \mathbb{N} \), define

\[
S_k = \sum_{i=1}^{k} \left( 2^i \right) = 2 + 2^2 + 2^3 + \cdots + 2^k.
\]

Prove \(\forall n \in \mathbb{N}, \, S_{2n} \equiv 0 \pmod{3}\).
Transcribed Image Text:**Question 3.** For \( k \in \mathbb{N} \), define \[ S_k = \sum_{i=1}^{k} \left( 2^i \right) = 2 + 2^2 + 2^3 + \cdots + 2^k. \] Prove \(\forall n \in \mathbb{N}, \, S_{2n} \equiv 0 \pmod{3}\).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,