Question 3 (Nonhomogeneous Systems). [184 x' 2 x+ Solve x(0) = x(t) = e3t - 2e2t – 11t - 5 x(t) = -2e3t +2e2t + 7t+5] - e3t +2e2t – 12t-6 x(t) =| 2e3t – 2e2t + 6t +5 e3t - 2e2t – 11t -6 x(t) =-23t +2e2t + 7t +5] - e3t + 2e2t – 12t- 7] [ 2e3t – 2e2t + 6t + 5 x(t) =| x(t) = 42 [5-t e2t x(t) = 2 +t

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Question 3 (Nonhomogeneous Systems).
[18t
x+
4.
2
Solve
x(0) =
x(t) =5|
e3t - 2e2t – 11t - 5
x(t) =
-2e3t +2e2t + 7t +5.
- e3t +2e2t – 12t – 6
(()=
x(t) =
2e3t – 2e2t + 6t +5
e3t - 2e2t – 11t-6
x()= -2e3t +2e2t + 7t +5]
-2e3t + 2e2t + 7t +5.
- e3t +2e2t – 12t – 7]
2e3t – 2e2t + 6t +5
x(t) =
x(t) = 42
[5-t]
e2t
x(t) =
2 +t
13t - 6
x(t) =
t+5
5+5t
12+2t et
[5+2t
x(t) =
x(t):
2+t
Transcribed Image Text:Question 3 (Nonhomogeneous Systems). [18t x+ 4. 2 Solve x(0) = x(t) =5| e3t - 2e2t – 11t - 5 x(t) = -2e3t +2e2t + 7t +5. - e3t +2e2t – 12t – 6 (()= x(t) = 2e3t – 2e2t + 6t +5 e3t - 2e2t – 11t-6 x()= -2e3t +2e2t + 7t +5] -2e3t + 2e2t + 7t +5. - e3t +2e2t – 12t – 7] 2e3t – 2e2t + 6t +5 x(t) = x(t) = 42 [5-t] e2t x(t) = 2 +t 13t - 6 x(t) = t+5 5+5t 12+2t et [5+2t x(t) = x(t): 2+t
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,