Question 2. Find the general solution of the given ODE for t > 0, t²x" − t(t+2)x' + (t + 2)x = t³e¹. Note that x₁(t) = t solves the homogeneous ODE.
Question 2. Find the general solution of the given ODE for t > 0, t²x" − t(t+2)x' + (t + 2)x = t³e¹. Note that x₁(t) = t solves the homogeneous ODE.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Show that you have reasoned about the problem a way that is correct
![(a) i=√1 and eit = cost + i sin t.
(b) For all integer n ≥ 0 we have:
cos(NT) ) = (−1)”, sin(nx) = 0, sin ((2n + 1)) = (−1)", cos ((2n + 1)
-1))
= 0.
(c) Integration by Parts: fudv = uv-
Svdu.
(d) Quadratic formula: If ar² + br + c = 0 for a 0. Then,
L[sin at]
(e) Laplace Transform: F(s) = fest f(t) dt.
(f) Convolution: (f* g)(t) = f f (0)g(t – 0)d0. Note (ƒ * g)(t) = (g* f)(t).
(g) LT of f(t) = sin at, f(t) = cos at and f(t) =t" for n ≥ 0:
and
=
(h) Properties of LT/ILT:
(1) LT/ILT are linear operators.
a
s² + a²
r =
u₁ (t) = -
(k) Change of variables:
-b ± √b² - 4ac
2a
L[cos at]
• Euler equation s = lnt or t=es,
Bernoulli equation: z = x-k
-k
• k-homogeneous equation: z =
(2) Shift/Scaling: L[eat f(t)] = F(s — a) for constant a € R and L[f(at)] = F(²) for constant a > 0.
(3) LT of derivatives: L[f(n) (t)] = s¹F(s) — sn−¹ƒ(0) — sn−2 ƒ'(0) — ... — fn−¹(0) for n ≥ 1.
● LT of integrals: L [√ f (0)d0] = F(s) when ƒ(0) = 0.
(4) Derivative of LT or LT of multiplication by polynomials: L[t" f(t)] = (−1)n d™ F(s) for n ≥ 1.
(5) Unit Step Function: L[He(t)f(t — c)] = F(s)e-sc.
(6) Convolution Property: L[(f * g)(t)] = F(s)G(s).
(i) Formula for Reduction of Order:
x₂(t) = x₁(t)
=
S
s² + a²
Te
e-Sp(t)dt
x²(t)
(j) Formula for Variation of Parameters: xp (t) = x₁(t)u₁(t) + x₂(t)u₂(t) when
x₂ (t)g(t)
- / [ ]
W(x1, x₂)(t)
or x = zt.
dt and
and L[t"]=
=
dt
u₂(t) = /[ W
•/
n!
gn+1
x₁ (t)g(t)
W(x1, x₂) (t)
dt](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd76a2d57-02e6-4734-ba8a-6fadc8c476a5%2F258aed8d-7fc5-4e82-8f8c-072e53643abb%2Fipo4nex_processed.png&w=3840&q=75)
Transcribed Image Text:(a) i=√1 and eit = cost + i sin t.
(b) For all integer n ≥ 0 we have:
cos(NT) ) = (−1)”, sin(nx) = 0, sin ((2n + 1)) = (−1)", cos ((2n + 1)
-1))
= 0.
(c) Integration by Parts: fudv = uv-
Svdu.
(d) Quadratic formula: If ar² + br + c = 0 for a 0. Then,
L[sin at]
(e) Laplace Transform: F(s) = fest f(t) dt.
(f) Convolution: (f* g)(t) = f f (0)g(t – 0)d0. Note (ƒ * g)(t) = (g* f)(t).
(g) LT of f(t) = sin at, f(t) = cos at and f(t) =t" for n ≥ 0:
and
=
(h) Properties of LT/ILT:
(1) LT/ILT are linear operators.
a
s² + a²
r =
u₁ (t) = -
(k) Change of variables:
-b ± √b² - 4ac
2a
L[cos at]
• Euler equation s = lnt or t=es,
Bernoulli equation: z = x-k
-k
• k-homogeneous equation: z =
(2) Shift/Scaling: L[eat f(t)] = F(s — a) for constant a € R and L[f(at)] = F(²) for constant a > 0.
(3) LT of derivatives: L[f(n) (t)] = s¹F(s) — sn−¹ƒ(0) — sn−2 ƒ'(0) — ... — fn−¹(0) for n ≥ 1.
● LT of integrals: L [√ f (0)d0] = F(s) when ƒ(0) = 0.
(4) Derivative of LT or LT of multiplication by polynomials: L[t" f(t)] = (−1)n d™ F(s) for n ≥ 1.
(5) Unit Step Function: L[He(t)f(t — c)] = F(s)e-sc.
(6) Convolution Property: L[(f * g)(t)] = F(s)G(s).
(i) Formula for Reduction of Order:
x₂(t) = x₁(t)
=
S
s² + a²
Te
e-Sp(t)dt
x²(t)
(j) Formula for Variation of Parameters: xp (t) = x₁(t)u₁(t) + x₂(t)u₂(t) when
x₂ (t)g(t)
- / [ ]
W(x1, x₂)(t)
or x = zt.
dt and
and L[t"]=
=
dt
u₂(t) = /[ W
•/
n!
gn+1
x₁ (t)g(t)
W(x1, x₂) (t)
dt
![Question 2. Find the general solution of the given ODE for t > 0,
t²x" − t(t + 2)x' + (t + 2)x = t³et.
Note that ₁ (t) = t solves the homogeneous ODE.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd76a2d57-02e6-4734-ba8a-6fadc8c476a5%2F258aed8d-7fc5-4e82-8f8c-072e53643abb%2Fm64lmo_processed.png&w=3840&q=75)
Transcribed Image Text:Question 2. Find the general solution of the given ODE for t > 0,
t²x" − t(t + 2)x' + (t + 2)x = t³et.
Note that ₁ (t) = t solves the homogeneous ODE.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)