Question 11 of 11 The molar solubility of Mg(CN)2 is 1.4 x 10-5 M at a certain temperature. Determine the value of Ksp for Mg(CN)2. PREV 1 2 Based on the set up of your ICE table, construct the expression for Ksp and then evaluate it. Do not combine or simplify terms. Ksp 1.1 x 10-14 %3D

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question

my question is in the screenshot.

**Topic: Solubility Product Constant (Ksp) Calculation for Magnesium Cyanide**

**Text:**

The molar solubility of Mg(CN)₂ is \(1.4 \times 10^{-5}\) M at a certain temperature. Determine the value of K\(_{sp}\) for Mg(CN)₂.

---

**ICE Table Explanation:**

The table below illustrates the Initial, Change, and Equilibrium (ICE) concentrations for the dissolution of magnesium cyanide in water:

|               | Mg(CN)₂(s) | ⇌ | Mg²⁺(aq)    | +  | 2 CN⁻(aq)   |
|---------------|------------|---|-------------|----|-------------|
| **Initial (M)** | –          |   | 0           |    | 0           |
| **Change (M)**  | –          |   | \(1.4 \times 10^{-5}\) |    | \(2.8 \times 10^{-5}\) |
| **Equilibrium (M)** | –    |   | \(1.4 \times 10^{-5}\) |    | \(2.8 \times 10^{-5}\) |

- **Initial Concentrations:**
  - Mg²⁺ and CN⁻ ions are initially not present in solution.
  
- **Change in Concentrations:**
  - As Mg(CN)₂ dissolves, the concentration of Mg²⁺ increases by \(1.4 \times 10^{-5}\) M.
  - The concentration of CN⁻ ions, due to stoichiometry, increases by \(2 \times (1.4 \times 10^{-5}) = 2.8 \times 10^{-5}\) M.

- **Equilibrium Concentrations:**
  - At equilibrium, the concentration of Mg²⁺ is \(1.4 \times 10^{-5}\) M.
  - The concentration of CN⁻ is \(2.8 \times 10^{-5}\) M.

**Determination of K\(_{sp}\):**

To find the \(K_{sp}\), use the expression:

\[ K_{sp} = [\text{Mg}^{2+}][\text{CN}^-]^2 \]

Substituting at equilibrium:

\[ K_{sp} = (1.4 \times
Transcribed Image Text:**Topic: Solubility Product Constant (Ksp) Calculation for Magnesium Cyanide** **Text:** The molar solubility of Mg(CN)₂ is \(1.4 \times 10^{-5}\) M at a certain temperature. Determine the value of K\(_{sp}\) for Mg(CN)₂. --- **ICE Table Explanation:** The table below illustrates the Initial, Change, and Equilibrium (ICE) concentrations for the dissolution of magnesium cyanide in water: | | Mg(CN)₂(s) | ⇌ | Mg²⁺(aq) | + | 2 CN⁻(aq) | |---------------|------------|---|-------------|----|-------------| | **Initial (M)** | – | | 0 | | 0 | | **Change (M)** | – | | \(1.4 \times 10^{-5}\) | | \(2.8 \times 10^{-5}\) | | **Equilibrium (M)** | – | | \(1.4 \times 10^{-5}\) | | \(2.8 \times 10^{-5}\) | - **Initial Concentrations:** - Mg²⁺ and CN⁻ ions are initially not present in solution. - **Change in Concentrations:** - As Mg(CN)₂ dissolves, the concentration of Mg²⁺ increases by \(1.4 \times 10^{-5}\) M. - The concentration of CN⁻ ions, due to stoichiometry, increases by \(2 \times (1.4 \times 10^{-5}) = 2.8 \times 10^{-5}\) M. - **Equilibrium Concentrations:** - At equilibrium, the concentration of Mg²⁺ is \(1.4 \times 10^{-5}\) M. - The concentration of CN⁻ is \(2.8 \times 10^{-5}\) M. **Determination of K\(_{sp}\):** To find the \(K_{sp}\), use the expression: \[ K_{sp} = [\text{Mg}^{2+}][\text{CN}^-]^2 \] Substituting at equilibrium: \[ K_{sp} = (1.4 \times
### Question 11 of 11

The molar solubility of Mg(CN)₂ is \(1.4 \times 10^{-5}\) M at a certain temperature. Determine the value of \(K_{sp}\) for Mg(CN)₂.

---

#### Instructions:

Based on the setup of your ICE table, construct the expression for \(K_{sp}\) and then evaluate it. Do not combine or simplify terms.

\[
K_{sp} = \boxed{} \times \boxed{} = 1.1 \times 10^{-14}
\]

---

#### Options for Boxes:

[0]

\[1.4 \times 10^{-5}\]

\[2.8 \times 10^{-5}\]

\[(1.4 \times 10^{-5})^2\]

\[(2.8 \times 10^{-5})^2\]

[x]

\[2x\]

\[x^2\]

\[(1.4 \times 10^{-5} + x)\]

\[(1.4 \times 10^{-5} - x)\]

\[(1.4 \times 10^{-5} + 2x)^2\]

\[(2.8 \times 10^{-5} - 2x)^2\]

\[(2.8 \times 10^{-5} + x)\]

\[2.7 \times 10^{-15}\]

\[1.1 \times 10^{-14}\]

\[2.2 \times 10^{-14}\]

\[3.9 \times 10^{-10}\]

\[1.4 \times 10^{-5}\]

---

#### Reset Button:

RESET

---

This interactive setup allows students to calculate the solubility product constant (\(K_{sp}\)) using given data, building an understanding of how solubility and equilibrium expressions are constructed from an ICE table (Initial, Change, Equilibrium).
Transcribed Image Text:### Question 11 of 11 The molar solubility of Mg(CN)₂ is \(1.4 \times 10^{-5}\) M at a certain temperature. Determine the value of \(K_{sp}\) for Mg(CN)₂. --- #### Instructions: Based on the setup of your ICE table, construct the expression for \(K_{sp}\) and then evaluate it. Do not combine or simplify terms. \[ K_{sp} = \boxed{} \times \boxed{} = 1.1 \times 10^{-14} \] --- #### Options for Boxes: [0] \[1.4 \times 10^{-5}\] \[2.8 \times 10^{-5}\] \[(1.4 \times 10^{-5})^2\] \[(2.8 \times 10^{-5})^2\] [x] \[2x\] \[x^2\] \[(1.4 \times 10^{-5} + x)\] \[(1.4 \times 10^{-5} - x)\] \[(1.4 \times 10^{-5} + 2x)^2\] \[(2.8 \times 10^{-5} - 2x)^2\] \[(2.8 \times 10^{-5} + x)\] \[2.7 \times 10^{-15}\] \[1.1 \times 10^{-14}\] \[2.2 \times 10^{-14}\] \[3.9 \times 10^{-10}\] \[1.4 \times 10^{-5}\] --- #### Reset Button: RESET --- This interactive setup allows students to calculate the solubility product constant (\(K_{sp}\)) using given data, building an understanding of how solubility and equilibrium expressions are constructed from an ICE table (Initial, Change, Equilibrium).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY