Question 11 If A A = 102 0 1 0 LO 0 1 = Given B = " 6 599 " 4 then solve AX = B. 48 X =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
If \( A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \), then

\[ A^{-1} = \begin{bmatrix} \, & \, & \, \\ \, & \, & \, \\ \, & \, & \, \end{bmatrix} \]

Given \( B = \begin{bmatrix} 6 \\ -3 \\ 4 \end{bmatrix} \), solve \( AX = B \).

\[ X = \begin{bmatrix} \, \\ \, \\ \, \end{bmatrix} \]
Transcribed Image Text:If \( A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \), then \[ A^{-1} = \begin{bmatrix} \, & \, & \, \\ \, & \, & \, \\ \, & \, & \, \end{bmatrix} \] Given \( B = \begin{bmatrix} 6 \\ -3 \\ 4 \end{bmatrix} \), solve \( AX = B \). \[ X = \begin{bmatrix} \, \\ \, \\ \, \end{bmatrix} \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,