Question 1 Question 5 Find the solution. (4D4 - 4D³ - 3D² - 2D + 1)y = 0. Find the solution. (D³ - 3D - 2)y =0; when x =0, y=0, y' = 9. y" = 0. A y = (c,+c_x)e¯*+ (c,+cx)e'/½ (A) y = (-1+ 2x)e¯2*+e2x y = (c,+c,)e¯*+ (c,+cx)e¯/2 B) y = (-2 + 3x)e¯*+2ex y = (-2 + x)e -*+ 2e* D y = (-1+ 2x)e2*+2e=x O y = (c,+cx)e¯½+(c;+cx)e*

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter3: Functions And Graphs
Section3.2: Graphs Of Equations
Problem 3E
Question
100%
Question 1
Question 5
Find the solution.
(4D4 - 4D³ - 3D² - 2D + 1)y = 0.
Find the solution.
(D³ - 3D - 2)y =0; when x =0, y=0, y' = 9. y" = 0.
A y = (c,+c_x)e¯*+ (c,+cx)e'/½
(A) y = (-1+ 2x)e¯2*+e2x
y = (c,+c,)e¯*+ (c,+cx)e¯/2
B) y = (-2 + 3x)e¯*+2ex
y = (-2 + x)e -*+ 2e*
(D y = (-1+ 2x)e2*+ 2e ¬x
© y = (c,+cx)e¯/½+ (e,+cx)e*
+ (c.
Transcribed Image Text:Question 1 Question 5 Find the solution. (4D4 - 4D³ - 3D² - 2D + 1)y = 0. Find the solution. (D³ - 3D - 2)y =0; when x =0, y=0, y' = 9. y" = 0. A y = (c,+c_x)e¯*+ (c,+cx)e'/½ (A) y = (-1+ 2x)e¯2*+e2x y = (c,+c,)e¯*+ (c,+cx)e¯/2 B) y = (-2 + 3x)e¯*+2ex y = (-2 + x)e -*+ 2e* (D y = (-1+ 2x)e2*+ 2e ¬x © y = (c,+cx)e¯/½+ (e,+cx)e* + (c.
Expert Solution
steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
College Algebra
College Algebra
Algebra
ISBN:
9781938168383
Author:
Jay Abramson
Publisher:
OpenStax
Algebra and Trigonometry (MindTap Course List)
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:
9781305071742
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning