Question 1 f(x) = VTx – cos (Tx). Prove that the equation f(x) = 0 has at least a solution p in the interval [0, 1]. By the Bisection method, find pn, n< 2 on [0, 1]. Use the table 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1 f(x) -1 -0.297 0.179 0.702 1.253 1.783 2.242 2.581 2.772 and write your answers in the next table. bn f(Pn) An Pn 1 1 2 How many iterations are necessary to solve VTx – cos (Tx) = 0 with accuracy 10¬º on [0, 1]?
Question 1 f(x) = VTx – cos (Tx). Prove that the equation f(x) = 0 has at least a solution p in the interval [0, 1]. By the Bisection method, find pn, n< 2 on [0, 1]. Use the table 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1 f(x) -1 -0.297 0.179 0.702 1.253 1.783 2.242 2.581 2.772 and write your answers in the next table. bn f(Pn) An Pn 1 1 2 How many iterations are necessary to solve VTx – cos (Tx) = 0 with accuracy 10¬º on [0, 1]?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
![### Question 1
\[ f(x) = \sqrt{\pi x} - \cos(\pi x) \]
**Prove that the equation \( f(x) = 0 \) has at least a solution \( p \) in the interval \([0, 1]\).**
**By the Bisection method, find \( p_n \), \( n \leq 2 \) on \([0, 1]\). Use the table:**
\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
x & 0 & 0.125 & 0.250 & 0.375 & 0.500 & 0.625 & 0.750 & 0.875 & 1 \\
\hline
f(x) & -1 & -0.297 & 0.179 & 0.702 & 1.253 & 1.783 & 2.242 & 2.581 & 2.772 \\
\end{array}
\]
**and write your answers in the next table.**
\[
\begin{array}{c|c|c|c|c}
n & a_n & b_n & p_n & f(p_n) \\
\hline
0 & 0 & 1 & & \\
1 & & & & \\
2 & & & & \\
\end{array}
\]
**How many iterations are necessary to solve \( \sqrt{\pi x} - \cos(\pi x) = 0 \) with accuracy \(10^{-5}\) on \([0, 1]\)?**](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe25f92a2-1c4d-41a3-af19-0cdf00d27604%2F61b50ebb-a93b-4581-bc6c-f88522716087%2Fowyozu_processed.png&w=3840&q=75)
Transcribed Image Text:### Question 1
\[ f(x) = \sqrt{\pi x} - \cos(\pi x) \]
**Prove that the equation \( f(x) = 0 \) has at least a solution \( p \) in the interval \([0, 1]\).**
**By the Bisection method, find \( p_n \), \( n \leq 2 \) on \([0, 1]\). Use the table:**
\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
x & 0 & 0.125 & 0.250 & 0.375 & 0.500 & 0.625 & 0.750 & 0.875 & 1 \\
\hline
f(x) & -1 & -0.297 & 0.179 & 0.702 & 1.253 & 1.783 & 2.242 & 2.581 & 2.772 \\
\end{array}
\]
**and write your answers in the next table.**
\[
\begin{array}{c|c|c|c|c}
n & a_n & b_n & p_n & f(p_n) \\
\hline
0 & 0 & 1 & & \\
1 & & & & \\
2 & & & & \\
\end{array}
\]
**How many iterations are necessary to solve \( \sqrt{\pi x} - \cos(\pi x) = 0 \) with accuracy \(10^{-5}\) on \([0, 1]\)?**
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)