Que Se considera la función f(x)=- a. ¿Es f continua en x = 1? x²+1 six≤1 -x+3 six>1 b. Comprueba que no existe f’(1). c. ¿Existe la recta tangente a la función en P(1,f(1))? x²+1 six≤1 f(x)= -x+3 six>1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Given the function in the image provided answer the following: A) Is the function continuous if x=1? B) Show that f’(1) doesn’t exist C) Is there a tangent line to the function at P(1,f(1)) ? I will attach a photo of the whole exercise just so you can see what I mean by f’ and P is point The
Que
Se considera la función f(x)=-
a. ¿Es f continua en x = 1?
x²+1 six≤1
-x+3 six>1
b. Comprueba que no existe f’(1).
c. ¿Existe la recta tangente a la función en P(1,f(1))?
Transcribed Image Text:Que Se considera la función f(x)=- a. ¿Es f continua en x = 1? x²+1 six≤1 -x+3 six>1 b. Comprueba que no existe f’(1). c. ¿Existe la recta tangente a la función en P(1,f(1))?
x²+1 six≤1
f(x)=
-x+3
six>1
Transcribed Image Text:x²+1 six≤1 f(x)= -x+3 six>1
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,