QUANTUM PHYSICS QUESTION Consider a particle in an infinite square well whose wave function is given by v(x) = 4x(a²-x²), 0

icon
Related questions
Question

PLEASE ANSWER ALL THESE QUESTIONS

▬▬
M
8.
PC
W
A
W
File
Paste
Home
Cut
Copy
Format Painter
Clipboard
| +15° |·14° |·13· |·12·1·11·1·10·|·9·1·8·1·7·1·6·1·5·1·4·1·3·1·2·1·1······20
Insert
04:02 PM
2022-06-18 Page: 1 of 1 Words: 3
Page Layout
References
Calibri (Body) 11
T
T
Α Α΄
BIU
abe X, X² A
T
Font
I U abe X₂ X³
Document2 - Microsoft Word (Product Activation Failed)
Review
View
B-B-S ## T
AaBbCcDc AaBbCcDc AaBbC AaBbCc AaBl AaBbCcl
ab
Normal
No Spaci... Heading 1
Heading 2
Title
Subtitle
F
Paragraph
G
Styles
··2 · 1 · 1 ·|·|·|·1·1·2·1·3·1·4·1·5·1· 6 · 1 · 7 · 1 · 8 · 1 ·9·1·10° | ·11·|··12·|·13·|··14° | ・15·| ·|\_\ ·| ·17·|*18* ||
QUANTUM PHYSICS QUESTION
Consider a particle in an infinite square well whose wave function is given by
v(x) = | 4x (a² = x²),
Ax(a²-x²), 0<x<a,
elsewhere,
0₁
where A is a real constant.
(a) Find A so that y(x) is normalized.
(b) Calculate the position and momentum uncertainties, Ax and Ap, and the product Ax Ap.
(c) Calculate the probability of finding 5²²h²/(2ma²) for a measurement of the energy.
Mailings
Aal
Aa
I
A
Change
Styles
G
■ ¥良 酒 ≡ 80%
Find
час
ac Replace
Select -
Editing
@?
O◄
+
Transcribed Image Text:▬▬ M 8. PC W A W File Paste Home Cut Copy Format Painter Clipboard | +15° |·14° |·13· |·12·1·11·1·10·|·9·1·8·1·7·1·6·1·5·1·4·1·3·1·2·1·1······20 Insert 04:02 PM 2022-06-18 Page: 1 of 1 Words: 3 Page Layout References Calibri (Body) 11 T T Α Α΄ BIU abe X, X² A T Font I U abe X₂ X³ Document2 - Microsoft Word (Product Activation Failed) Review View B-B-S ## T AaBbCcDc AaBbCcDc AaBbC AaBbCc AaBl AaBbCcl ab Normal No Spaci... Heading 1 Heading 2 Title Subtitle F Paragraph G Styles ··2 · 1 · 1 ·|·|·|·1·1·2·1·3·1·4·1·5·1· 6 · 1 · 7 · 1 · 8 · 1 ·9·1·10° | ·11·|··12·|·13·|··14° | ・15·| ·|\_\ ·| ·17·|*18* || QUANTUM PHYSICS QUESTION Consider a particle in an infinite square well whose wave function is given by v(x) = | 4x (a² = x²), Ax(a²-x²), 0<x<a, elsewhere, 0₁ where A is a real constant. (a) Find A so that y(x) is normalized. (b) Calculate the position and momentum uncertainties, Ax and Ap, and the product Ax Ap. (c) Calculate the probability of finding 5²²h²/(2ma²) for a measurement of the energy. Mailings Aal Aa I A Change Styles G ■ ¥良 酒 ≡ 80% Find час ac Replace Select - Editing @? O◄ +
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer