Q7) L(y") = a) s²L(y(x)) + sy(0) - y'(0) c) s²L(y(x))-sy(0) - y'(0) b) s²L(y(x)) + sy(0) + y'(0) d) s²L(y(x))-sy(0) + y'(0) homogeneous Or
Q7) L(y") = a) s²L(y(x)) + sy(0) - y'(0) c) s²L(y(x))-sy(0) - y'(0) b) s²L(y(x)) + sy(0) + y'(0) d) s²L(y(x))-sy(0) + y'(0) homogeneous Or
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
please solve question 7
![Q1) L-1
a) cosht -1
b) 1 - cosht c) (cosh2t - 1) d)/(1-cosh2t)
Q2) The general solution of y"" + 2y" -y' - 2y = 0, is:
a) y(x) = c₂e²x + c₂e-* + c3e*
c) y(x) = c₁e²x + c₂ex
b) y(x) = c₂e-2x + c₂e-*
d) y(x) = c₂e-2x + ₂x + c3e-*
Q3) Evaluate L (e-2t sin4t):
4
s+2
a)
5+2
s²+8s+20
d)
s²+45+20
S²+45+20
s²+85+20
Q4) If the power series method was used to solve the following ODE..
(x-0.5)y"-5 y' + (x² - 1) y=0, x= 0. Then the interval of convergence, is:
a)
b) (-1,1)
c) (0,00)
Q5) fest dt =
е
b) 0
c)=²
d) ∞
.
y
Q6) If you know that the radius of convergent of the series method for the ODE
y"+y' + = 0, xo = 2 is 5. Find the value for b. (b < 0) :
(a) -5
x-b
(b)-3
(c)-2
d) <-8
Q7) L(y") =
=
a) s²L(y(x)) + sy(0) - y'(0)
b) s² L(y(x)) + sy(0) + y'(0)
c) s²L(y(x)) - sy(0) - y'(0)
d) s²L(y(x)) - sy(0) + y'(0)
Q8) Assume that the roots of a characteristic polynomial of a homogeneous ODE with constant
coefficients are 0,0,0,2+5i,2-5i, then the general solutiom of this ODE, is:
a) C₁ + C₂x + C3x² + e²x [Acos(x) + Bsin(x)]
b) C₁+C₂x + C3x² +e5x[Acos (2x) + Bsin(2x)]
c) C₁x + ₂x² + C3x³ + ex[Acos (5x) + Bsin(5x)]
d) C₁ + C₂x + C3x² + e²x [Acos (5x) + Bsin(5x)]
Q9) The linear form of nonlinear ODE y' - 2y = 2y, is:
a) u' + 6u = -6
b) u' - 6u = -6
c) u' - 6u = 6
d) u' + 6u = 6
Q10) The singular point (s) of (x + 1) y' + x²y = 0, is (are):
c) 0
b) 0,-1
a) 0,1
d)-1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb0e1f0c2-ba65-4f2b-8e8a-b8b873b0039e%2F386be2b3-010f-4172-af1b-998d31c5d99a%2Fu2ivpqq_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Q1) L-1
a) cosht -1
b) 1 - cosht c) (cosh2t - 1) d)/(1-cosh2t)
Q2) The general solution of y"" + 2y" -y' - 2y = 0, is:
a) y(x) = c₂e²x + c₂e-* + c3e*
c) y(x) = c₁e²x + c₂ex
b) y(x) = c₂e-2x + c₂e-*
d) y(x) = c₂e-2x + ₂x + c3e-*
Q3) Evaluate L (e-2t sin4t):
4
s+2
a)
5+2
s²+8s+20
d)
s²+45+20
S²+45+20
s²+85+20
Q4) If the power series method was used to solve the following ODE..
(x-0.5)y"-5 y' + (x² - 1) y=0, x= 0. Then the interval of convergence, is:
a)
b) (-1,1)
c) (0,00)
Q5) fest dt =
е
b) 0
c)=²
d) ∞
.
y
Q6) If you know that the radius of convergent of the series method for the ODE
y"+y' + = 0, xo = 2 is 5. Find the value for b. (b < 0) :
(a) -5
x-b
(b)-3
(c)-2
d) <-8
Q7) L(y") =
=
a) s²L(y(x)) + sy(0) - y'(0)
b) s² L(y(x)) + sy(0) + y'(0)
c) s²L(y(x)) - sy(0) - y'(0)
d) s²L(y(x)) - sy(0) + y'(0)
Q8) Assume that the roots of a characteristic polynomial of a homogeneous ODE with constant
coefficients are 0,0,0,2+5i,2-5i, then the general solutiom of this ODE, is:
a) C₁ + C₂x + C3x² + e²x [Acos(x) + Bsin(x)]
b) C₁+C₂x + C3x² +e5x[Acos (2x) + Bsin(2x)]
c) C₁x + ₂x² + C3x³ + ex[Acos (5x) + Bsin(5x)]
d) C₁ + C₂x + C3x² + e²x [Acos (5x) + Bsin(5x)]
Q9) The linear form of nonlinear ODE y' - 2y = 2y, is:
a) u' + 6u = -6
b) u' - 6u = -6
c) u' - 6u = 6
d) u' + 6u = 6
Q10) The singular point (s) of (x + 1) y' + x²y = 0, is (are):
c) 0
b) 0,-1
a) 0,1
d)-1
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)