Q6 A 1.0 m length copper bar with a constant cross section area of 0.0001 m² have the values of density, thermal conductivity and specific heat of 8960 kg/m², 385 W/m.K and 389 J/kg.K respectively. The copper bar is perfectly insulated laterally, with ends kept at temperature 0°C. The one-dimensional heat equation, with u(x,t) as the temperature is given as: ди = 0 k a? is the thermal diffusivity of the material, where; k = thermal conductivity, o=specific op heat, and p=density of material. (i) By using the method of separation of variable, derive the expression for the heat conduction through the copper bar If the initial uniform temperature, f(x)=100sin Ax, how long will it take for the (ii) maximum temperature in the bar to drop to 50°C. (Hint: maximum temperature occurs at the center of the bar)
Q6 A 1.0 m length copper bar with a constant cross section area of 0.0001 m² have the values of density, thermal conductivity and specific heat of 8960 kg/m², 385 W/m.K and 389 J/kg.K respectively. The copper bar is perfectly insulated laterally, with ends kept at temperature 0°C. The one-dimensional heat equation, with u(x,t) as the temperature is given as: ди = 0 k a? is the thermal diffusivity of the material, where; k = thermal conductivity, o=specific op heat, and p=density of material. (i) By using the method of separation of variable, derive the expression for the heat conduction through the copper bar If the initial uniform temperature, f(x)=100sin Ax, how long will it take for the (ii) maximum temperature in the bar to drop to 50°C. (Hint: maximum temperature occurs at the center of the bar)
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
subject (differential equation)
pls show me full steps with clear handwriting sir
pls answer me in 10 mins sir
urgent pls
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY