Q4) The steel framework is used to support the reinforced stone concrete slab that is used for an office. The slab is 200 mm thick. Sketch the loading that acts along members BE and FED. Take a = 2 m, b = 5 m. Please refer Tables 1.2 and 1.4. B TABLE 1.2 Minimum Densities for Design Loads from Materials* Aluminum Concrete, plain cinder Concrete, plain stone Concrete, reinforced cinder Concrete, reinforced stone Clay, dry Clay, damp Sand and gravel, dry, loose Sand and gravel, wet Masonry, lightweight solid concrete Masonry, normal weight Plywood Steel, cold-drawn Wood, Douglas Fir Wood, Southern Pine Wood, spruce lb/ft³ 170 108 144 111 150 63 110 100 120 105 135 36 492 34 37 29 kN/m³ 26.7 17.0 22.6 174 23.6 9.9 173 15.7 18.9 16.5 21.2 5.7 77.3 5.3 5.8 4.5 *Minimum Densities for Design Loads from Materials, Reproduced with permission from American Society of Civil Engineers Minimum Design Loads for Buildings and Other Structures, ASCE/ SEI 7-10. Copies of this standard may be purchaed from ASCE at www.pubs.asce.org, American Society of Civil Engineers.
Q4) The steel framework is used to support the reinforced stone concrete slab that is used for an office. The slab is 200 mm thick. Sketch the loading that acts along members BE and FED. Take a = 2 m, b = 5 m. Please refer Tables 1.2 and 1.4. B TABLE 1.2 Minimum Densities for Design Loads from Materials* Aluminum Concrete, plain cinder Concrete, plain stone Concrete, reinforced cinder Concrete, reinforced stone Clay, dry Clay, damp Sand and gravel, dry, loose Sand and gravel, wet Masonry, lightweight solid concrete Masonry, normal weight Plywood Steel, cold-drawn Wood, Douglas Fir Wood, Southern Pine Wood, spruce lb/ft³ 170 108 144 111 150 63 110 100 120 105 135 36 492 34 37 29 kN/m³ 26.7 17.0 22.6 174 23.6 9.9 173 15.7 18.9 16.5 21.2 5.7 77.3 5.3 5.8 4.5 *Minimum Densities for Design Loads from Materials, Reproduced with permission from American Society of Civil Engineers Minimum Design Loads for Buildings and Other Structures, ASCE/ SEI 7-10. Copies of this standard may be purchaed from ASCE at www.pubs.asce.org, American Society of Civil Engineers.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
This is a structural analysis question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning