Q4) By applying KCL to the node v/(t), the value of the voltage labeled v/(t) is (V): a) 2.86 cos(10t +77.9°) d) 4.1 cos(10t -62.3°) c) 4.1 cos(10t +62.3%) f) 3.92 cos(10t-77.9°) b) 2.86 cos(10t-77.9°) e) 3.92 cos(10t +77.9°)

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
circuits, pleaseeeee solve questionnn4
The switch in Fig. 1 has been closed for long time. It opens at t=0. Please refer to the circuit of
Fig. 1 for the following questions (Q1, and Q2)
Q1) The time constant t can be found as:
a) 6.67 s b) 0.3 s
c) 10 s
d) 0.1 s
Q2) The current i(t) at t= 1m s is:
a) 2.02 A b) 6 A
c) 4.02 A
a) 1.23 cos(10t +30°) V
d) 2.25 cos(10t-53.6%) V
e) 0.15 s
d) 5.98 A e) 4 A
2cos101 V
b) 1.23 cos(10t-30°) V
e) 1.79 cos(10t -26.57°) V
20 400 40
www
HE
Refer to the circuit of Fig. 2 for the following 3 questions (Q3, Q4 and Q5)
Q3) By using superposition technique, the contribution of the 2cos10t voltage source to the value of
vi(t) is:
Q5) The value of the inductance of the j2 2 impedance is:
a) 0.2 H b) 10 H
c) 20 H d)1.6 H
e) 16 H
Q7) The current in(t) of Fig. 4 can be found as (mA):
a) 12.5cos(500t - 0.107°)
d) 12.5 cos(500t + 89.9°)
pa
Q6) Referring to the circuit of Fig. 3, Zin can be determined as:
a)22+j6Ω b)18+j6Ω c) 22-j6 Ω d) 18-j62 e)-18+j6 22
Q4) By applying KCL to the node v/(t), the value of the voltage labeled v/(t) is (V):
a) 2.86 cos(10t +77.9°)
b) 2.86 cos(10t-77.9°)
d) 4.1 cos(10t-62.3°)
c) 4.1 cos(10t +62.3°)
f) 3.92 cos(10t-77.9°)
e) 3.92 cos(10t +77.9°)
5923
5 cos 10rv
b) 12.5cos(500t+ 0.107°)
e) 12.5 cos(500t+ 0.205°)
20:2
-ww
c) 2.25 cos(10t +53.6°) V
f) 1.79 cos(10t+26.57°) V
10.0
ww
7 1.5 H
m
2 -15.02
-
1=0
Q9) The complex power absorbed by voltage source is (VA)
b)-751.3-j457. c)-823.5+j294.1
a) -823.5-j294.1
d) -751.3+j457.7
e) 751.3-j457.7
Fig. 1
102 cos5001 V
Fig. 2
Fig. 3
Refer to the circuit of Fig. 5 for the following 2 questions (Q8, and Q9)
Q8) The current through the-j10 2 can be found as (A rms)
a) 8.75/19.65*
b) 8.75-19.65*
c) 10.25/90*
d) 10.25Z-90°
e) 202-53.26
f) 20253.26
c) 12.5cos(500t - 89.9°)
f) 12.5 cos(500t - 0.205°)
10Ω (1) 6A
100/0° V ms
10042
www
0.2 i
Fig. 4
–ΠΟΥ
Fig. 5
11
2002
0.3mH
200
ww
1002
Transcribed Image Text:The switch in Fig. 1 has been closed for long time. It opens at t=0. Please refer to the circuit of Fig. 1 for the following questions (Q1, and Q2) Q1) The time constant t can be found as: a) 6.67 s b) 0.3 s c) 10 s d) 0.1 s Q2) The current i(t) at t= 1m s is: a) 2.02 A b) 6 A c) 4.02 A a) 1.23 cos(10t +30°) V d) 2.25 cos(10t-53.6%) V e) 0.15 s d) 5.98 A e) 4 A 2cos101 V b) 1.23 cos(10t-30°) V e) 1.79 cos(10t -26.57°) V 20 400 40 www HE Refer to the circuit of Fig. 2 for the following 3 questions (Q3, Q4 and Q5) Q3) By using superposition technique, the contribution of the 2cos10t voltage source to the value of vi(t) is: Q5) The value of the inductance of the j2 2 impedance is: a) 0.2 H b) 10 H c) 20 H d)1.6 H e) 16 H Q7) The current in(t) of Fig. 4 can be found as (mA): a) 12.5cos(500t - 0.107°) d) 12.5 cos(500t + 89.9°) pa Q6) Referring to the circuit of Fig. 3, Zin can be determined as: a)22+j6Ω b)18+j6Ω c) 22-j6 Ω d) 18-j62 e)-18+j6 22 Q4) By applying KCL to the node v/(t), the value of the voltage labeled v/(t) is (V): a) 2.86 cos(10t +77.9°) b) 2.86 cos(10t-77.9°) d) 4.1 cos(10t-62.3°) c) 4.1 cos(10t +62.3°) f) 3.92 cos(10t-77.9°) e) 3.92 cos(10t +77.9°) 5923 5 cos 10rv b) 12.5cos(500t+ 0.107°) e) 12.5 cos(500t+ 0.205°) 20:2 -ww c) 2.25 cos(10t +53.6°) V f) 1.79 cos(10t+26.57°) V 10.0 ww 7 1.5 H m 2 -15.02 - 1=0 Q9) The complex power absorbed by voltage source is (VA) b)-751.3-j457. c)-823.5+j294.1 a) -823.5-j294.1 d) -751.3+j457.7 e) 751.3-j457.7 Fig. 1 102 cos5001 V Fig. 2 Fig. 3 Refer to the circuit of Fig. 5 for the following 2 questions (Q8, and Q9) Q8) The current through the-j10 2 can be found as (A rms) a) 8.75/19.65* b) 8.75-19.65* c) 10.25/90* d) 10.25Z-90° e) 202-53.26 f) 20253.26 c) 12.5cos(500t - 89.9°) f) 12.5 cos(500t - 0.205°) 10Ω (1) 6A 100/0° V ms 10042 www 0.2 i Fig. 4 –ΠΟΥ Fig. 5 11 2002 0.3mH 200 ww 1002
Expert Solution
Step 1

Solution 4.

Electrical Engineering homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Sinusoids and Phasors of Alternating Circuit
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,