Q3: A nozzle is a device for increasing the velocity of a steadily flowing stream of fluid. At the inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (a) Find the velocity at the nozzle exit. (b) If the rate of flow of fluid is 31.6 kg/s and the specific volume at the inlet is 0.19 m’/kg, find the inlet area. (c) If the specific volume at the nozzle exit is 0.5 m/kg, find the exit area of the nozzle.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Q3: A nozzle is a device for increasing the velocity of a steadily flowing stream of fluid. At the
inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the
exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible
heat loss from it.
(a) Find the velocity at the nozzle exit.
(b) If the rate of flow of fluid is 31.6 kg/s and the specific volume at the inlet is 0.19 m³/kg, find
the inlet area.
(c) If the specific volume at the nozzle exit is 0.5 m/kg, find the exit area of the nozzle.
Transcribed Image Text:Q3: A nozzle is a device for increasing the velocity of a steadily flowing stream of fluid. At the inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (a) Find the velocity at the nozzle exit. (b) If the rate of flow of fluid is 31.6 kg/s and the specific volume at the inlet is 0.19 m³/kg, find the inlet area. (c) If the specific volume at the nozzle exit is 0.5 m/kg, find the exit area of the nozzle.
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Compressible Flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY