Q2/Solve differential equation. Uxy = cos(x + y)²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Q2/ Solve differential equation.
Uxy = cos(x + y)²
Transcribed Image Text:Q2/ Solve differential equation. Uxy = cos(x + y)²
Expert Solution
Step 1: PDE solution

Q2: Given PDE is the following :

U subscript x y end subscript equals cos left parenthesis x plus y right parenthesis squared

integrating partially with respect to x,we get

U subscript y equals integral cos left parenthesis x plus y right parenthesis squared d x plus phi left parenthesis y right parenthesis comma w h e r e comma phi space i s space a r b i t r a r y space f u n c t i o n space o f space y space o n l y.

Let,V left parenthesis x comma y right parenthesis equals integral cos left parenthesis x plus y right parenthesis squared d x

So we have U subscript y equals V left parenthesis x comma y right parenthesis plus phi left parenthesis y right parenthesis

again integrating to above with respect to y,we get

U left parenthesis x comma y right parenthesis equals integral V left parenthesis x comma y right parenthesis d y plus integral phi left parenthesis y right parenthesis d y plus psi left parenthesis x right parenthesis comma w h e r e space psi space i s space a r b i t r a r y space f u n c t i o n space o f space x space o n l y


steps

Step by step

Solved in 3 steps with 8 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,