Q23: The integrating factor for the differential equation 2xydx-x²dy = 0is: (C) Get+c₂e-* (D) C₁+C₂e* (B) (C) + (D) y²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Deferential equations, please solve questionnnnnnn 23

Q21: The Laplacian of the function f(x, y, z) = A sin(ax) sin(by) sin(cz)
(A)-(a² + b²+c²)ƒ(x, y, z)
(C)-(a+b+c)f(x,y,z)
Q22: The solution of y"+y = 0 is- (A) ₁ + ₂*
(C) Ge*+c₂e-*
Q23: The integrating factor for the differential equation 2xydx-x²dy = Ois:
(A) -/-/
(D) y²
=
Q25: The solution of y" + y = 0 is= (A) Ge*+c₂e-*
(C) cicost + c sinx
(B)(a² + b² + c²)f(x,y,z)
(D) (a+b+c)f(x, y, z)
(B) ce~* + Czxe
(D) C₁+C₂e*
(0)
(B)
(C) 4 (D) 116
Q24: The value of the line integral [(2x + 3y)dx + (3x + 4y)dy] where cis the straight-line segment
y = 2x + 3 from the point (0,3) to the point (2,7) is: (A) 126 (B) 63
(B) ce+c₂xe-*
(D) cicosx + Czxsinx
Transcribed Image Text:Q21: The Laplacian of the function f(x, y, z) = A sin(ax) sin(by) sin(cz) (A)-(a² + b²+c²)ƒ(x, y, z) (C)-(a+b+c)f(x,y,z) Q22: The solution of y"+y = 0 is- (A) ₁ + ₂* (C) Ge*+c₂e-* Q23: The integrating factor for the differential equation 2xydx-x²dy = Ois: (A) -/-/ (D) y² = Q25: The solution of y" + y = 0 is= (A) Ge*+c₂e-* (C) cicost + c sinx (B)(a² + b² + c²)f(x,y,z) (D) (a+b+c)f(x, y, z) (B) ce~* + Czxe (D) C₁+C₂e* (0) (B) (C) 4 (D) 116 Q24: The value of the line integral [(2x + 3y)dx + (3x + 4y)dy] where cis the straight-line segment y = 2x + 3 from the point (0,3) to the point (2,7) is: (A) 126 (B) 63 (B) ce+c₂xe-* (D) cicosx + Czxsinx
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,