Q21 [CE AMath 8311 12] Let f(x) be a function of x and let k and s be constants. (a) By using the substitution y = x + ks, show that Hence show that, for any positive integer n, -(k+1)s [ f(x + ks)dx = √²+¹fC
Q21 [CE AMath 8311 12] Let f(x) be a function of x and let k and s be constants. (a) By using the substitution y = x + ks, show that Hence show that, for any positive integer n, -(k+1)s [ f(x + ks)dx = √²+¹fC
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Now Senior Secondary Mathematics (Module 2: Calculus and Algebra).
New Senior Secondary Mathematics (Module 2: Calculus and Algebra)
Advanced Exercise Ch. 10: Definite Integral
Q21 [CE AMath 8311 12]
Let f(x) be a function of x and let k and s be constants.
By using the substitution y = x + ks, show that
(a)
(k+1)s
["f(x + ks)dx= [(x+¹)*f f(x)dx.
Jks
Hence show that, for any positive integer n
[(x) + f(x + s) + + f(x + (n − 1)s)]dx = f(x)dx.
By using the substitution x = sin 8, evaluate
Using this result together with (a), evaluate
20
1
1
1
1
+
1-x²
++
dx.
* √₁-(x + +)* * √₁-(x + ²)²
√₁-(+2).
1-
1-
1-
Q22 [CE AMath 80II 12]
(a) Given that f(x) = f(a-x) for all real values of x, by using the substitution u = a-x, show that
["xf(x) dx = a f" f(u)du - ["uf(u) du
Hence deduce that
["xf(x) dx = f(x)dx.
(b) By using the substitution u = x-
sin¹ x
cos* u
-dx =
sin¹ x + cos x
sin u + cos¹ u
0
By using this result and
["f(x)dx = [ f(x)dx + ["f(x)dx,
evaluate
sin¹ x
S
-dx
sin¹ x + cos¹ x
(c) Using (a) and (b), evaluate
x sin¹ x
S
sin¹ x + cos4 x
Answer
(b)
=x-show that
f
-dx.
58
- (x + ²²-1) ²
du.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4ae89d13-3da3-4f42-8a30-4752fc9f6b5c%2Fa12c9bd2-8a5c-457e-8613-2bb606ea7556%2Fpq3oafs_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Now Senior Secondary Mathematics (Module 2: Calculus and Algebra).
New Senior Secondary Mathematics (Module 2: Calculus and Algebra)
Advanced Exercise Ch. 10: Definite Integral
Q21 [CE AMath 8311 12]
Let f(x) be a function of x and let k and s be constants.
By using the substitution y = x + ks, show that
(a)
(k+1)s
["f(x + ks)dx= [(x+¹)*f f(x)dx.
Jks
Hence show that, for any positive integer n
[(x) + f(x + s) + + f(x + (n − 1)s)]dx = f(x)dx.
By using the substitution x = sin 8, evaluate
Using this result together with (a), evaluate
20
1
1
1
1
+
1-x²
++
dx.
* √₁-(x + +)* * √₁-(x + ²)²
√₁-(+2).
1-
1-
1-
Q22 [CE AMath 80II 12]
(a) Given that f(x) = f(a-x) for all real values of x, by using the substitution u = a-x, show that
["xf(x) dx = a f" f(u)du - ["uf(u) du
Hence deduce that
["xf(x) dx = f(x)dx.
(b) By using the substitution u = x-
sin¹ x
cos* u
-dx =
sin¹ x + cos x
sin u + cos¹ u
0
By using this result and
["f(x)dx = [ f(x)dx + ["f(x)dx,
evaluate
sin¹ x
S
-dx
sin¹ x + cos¹ x
(c) Using (a) and (b), evaluate
x sin¹ x
S
sin¹ x + cos4 x
Answer
(b)
=x-show that
f
-dx.
58
- (x + ²²-1) ²
du.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 6 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)