Q2) Consider the full wave rectifier circuit shown in fig 2 .The converter is operating with firing angle delay angle 45° 1. Draw and calculate the average output voltage 2. The load current in Amper 3. Determine the output power 4. Accurately plot the current through the two thyristor Vi- 220 sinwt T1 100 mH V2 220 sin (wt-180) T2 2 ohm

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
  • engineering
Q2) Consider the full wave rectifier circuit shown in fig 2 .The converter is
operating with firing angle delay angle 45°
1. Draw and calculate the average output voltage
2. The load current in Amper
3. Determine the output power
4. Accurately plot the current through the two thyristor
V1= 220 sinwt
T1
100 mH
V2 220 sin (wt-180) T2
2 ohm
Transcribed Image Text:Q2) Consider the full wave rectifier circuit shown in fig 2 .The converter is operating with firing angle delay angle 45° 1. Draw and calculate the average output voltage 2. The load current in Amper 3. Determine the output power 4. Accurately plot the current through the two thyristor V1= 220 sinwt T1 100 mH V2 220 sin (wt-180) T2 2 ohm
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Speed control of motor
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,